1 調査依頼事項

Similar documents
土の三軸圧縮試験

15_layout_07.indd

土木建設技術シンポジウム2002

6. 現況堤防の安全性に関する検討方法および条件 6.1 浸透問題に関する検討方法および条件 検討方法 現況堤防の安全性に関する検討は 河川堤防の構造検討の手引き( 平成 14 年 7 月 ): 財団法人国土技術研究センター に準拠して実施する 安全性の照査 1) 堤防のモデル化 (1)

土の段階載荷による圧密試験

<94F E4F8EB25F >

Microsoft Word - CPTカタログ.doc

<4D F736F F D2091E E8FDB C588ECE926E816A2E646F63>

<95F18D908F91955C8E862E786C7378>

PowerPoint プレゼンテーション

- 14 -

<93798EBF8E8E8CB18C8B89CA88EA C81698DDE97BF816A AB A81698DBB8EBF A>

4. 粘土の圧密 4.1 圧密試験 沈下量 問 1 以下の問いに答えよ 1) 図中の括弧内に入る適切な語句を答えよ 2) C v( 圧密係数 ) を 圧密試験の結果から求める方法には 圧密度 U=90% の時間 t 90 から求める ( 5 ) 法と 一次圧密理論曲線を描いて作成される ( 6 )


H23 基礎地盤力学演習 演習問題

Microsoft PowerPoint - 2_6_shibata.ppt [互換モード]

液状化判定計算(道示編)V20-正規版.xls

地盤工学会北海道支部技術報告集第 5 5 号平成 27 年 1 月於室蘭市 新たなフォールコーン試験装置の開発とその応用 北海道大学工学部 学生会員 渡辺葉子 北海道大学工学研究院国際会員田中洋行 1. はじめに船舶の大型化, あるいは航路の維持新設によって毎年大量の土砂が発生している これらの浚渫

強化プラスチック裏込め材の 耐荷実験 実験報告書 平成 26 年 6 月 5 日 ( 株 ) アスモ建築事務所石橋一彦建築構造研究室千葉工業大学名誉教授石橋一彦

<88AE3289F188CF88F589EF E786264>

マンホール浮き上がり検討例

4. 再生資源の利用の促進について 建近技第 385 号 平成 3 年 10 月 25 日 4-1

< F2D484D4489F090CD835C E71945B95698EE690E02E>

<4D F736F F D CA8E86816A94AD90B AEE8F8082C982C282A282C42E646F63>

Microsoft PowerPoint - suta.ppt [互換モード]

(Microsoft Word - \215\234\215\336\216\216\214\261.doc)

<926E906B8E9E2D958282AB8FE382AA82E882CC8C9F93A22E626376>

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F312E646F63>

第 3 章切土, 盛土, 大規模盛土, のり面保護工, 自然斜面等 3.1 切土 1. 切土のり面勾配 切土のり面勾配は, のり高及びのり面の土質等に応じて適切に設定するものとします その設定にあたっては, 切土するのり面の土質の確認を前提として, 表.3-1 を標準とします 崖の高さが 5m 以下

埋戻しに使用する材料の標準仕様書 平成 25 年 9 月 ( 改訂 ) 上越市

<4D F736F F D20926E94D58D488A C F95B BC8FE9816A2E646F63>

土層強度検査棒 計測データ例 kn/ m2 45 滑り面の可能性ありとした箇所の条件 : 地下水に飽和していること 及び SS 試験で 100kg 以下で自沈する箇所であること 土層強度検査棒による地盤強度計測結果グラフ 粘着力 計測値 30 T2 O5 25 M4 M3 20 滑り面

Microsoft Word - 木材の塩素濃度報告110510_2.docx

Microsoft Word - じょく層報告(三野道路用)_

2 2. 電子納品データのエラー原因電子納品データは なぜ エラーが多いのか? データ作成者が電子データに不慣れ電子納品要領? XML データ? 難しい よく分からんソフトウェアのバグもしかして ソフトのバグ? 実際は ソフトウェアのバグに起因するデータエラーが存在するが 気がつかないそもそも 入力

<897E8C F80837D A815B838B81458FE395948ECE95C7817B8145>

西松建設技報

杭の事前打ち込み解析

Super Build/宅造擁壁 出力例1

5 章データの整理分析 5.1 データの整理分析概要調査結果, 各サンプル箇所のデータに基づき, 両工法の比較 分析を行い, 盛土, 締固めによる工法 と, 路体全体を一旦掘削してから盛土, 締固めにより路体を築造する工法 両工法の仕様書を作成する 室内試験結果の比較検討 各室内試験の結

Microsoft PowerPoint - 1.せん断(テキスト用)

パソコンシミュレータの現状

<8BA68B6389EF8E9197BF2E786477>

<4D F736F F D20332E874192B789AA8B5A89C891E E592CB8CE52E646F6378>

177 箇所名 那珂市 -1 都道府県茨城県 市区町村那珂市 地区 瓜連, 鹿島 2/6 発生面積 中 地形分類自然堤防 氾濫平野 液状化発生履歴 なし 土地改変履歴 大正 4 年測量の地形図では 那珂川右岸の支流が直線化された以外は ほぼ現在の地形となっている 被害概要 瓜連では気象庁震度 6 強

<4D F736F F D208E9197BF A082C68E7B8D A815B82CC8D5C91A28AEE8F C4816A2E646F63>

道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月

国土技術政策総合研究所 研究資料

<4D F736F F D20834A C C7997CA89BB298B5A8F708E9197BF28914F94BC AAE90AC816A2E646F63>


<4D F736F F D2081A E682568FCD926E94D592B28DB E94D589FC97C78C7689E62E646F63>

集水桝の構造計算(固定版編)V1-正規版.xls

Microsoft PowerPoint - zairiki_3

4. 堆砂

Microsoft PowerPoint - 01_内田 先生.pptx

Microsoft PowerPoint - elast.ppt [互換モード]

スリランカ国 マンムナイ橋梁建設計画 準備調査 ( その 2) 協力準備調査報告書 資料 6.2 地質調査結果 概要地質調査は現地再委託により実施し 橋梁基礎形式の検討 支持層の検討に必要な地質 地層状況を把握するためにボーリング掘削 標準貫入試験 土質資料採取及び室内試験を行った これ

L 型擁壁 (CP-WALL) 構造図 S=1/30 CP-WALL(C タイプ ) H=600~700 断面図 正面 背面図 H T1 T2 T4 T3 T4 H2 H1 100 B1 B2 T5 H 連結穴 M16 背面 水抜孔 φ75 正面 水抜孔 φ90 h1 h2 製品寸法表

<4D F736F F D208E9197BF31302D F4390B3816A96FB899890F A E8F8DC58F4994C55F8CC589BB8DDE8B5A8F705F202D208

質 学 Ⅰ 土の基本的性質 (2) ( 粒度 ) 澁 啓 2018 年 4 16

Microsoft PowerPoint - 知財報告会H20kobayakawa.ppt [互換モード]

三軸試験による礫混じり堤体材料の力学特性の評価 名城大学大学院 学生会員牧田祐輝 中島康介 名城大学 国際会員小高猛司板橋一雄 建設技術研究所 国際会員李圭太 中部土質試験協同組合正会員 坪田邦治 加藤雅也 1. はじめに河川堤防の浸透時のすべり破壊に対する安定性評価には, 室内三軸試験で得られる強

<4D F736F F D E682568FCD CC82B982F192668BAD93785F F2E646F63>

Microsoft PowerPoint - H24 aragane.pptx

構造力学Ⅰ第12回

立川市雨水浸透施設設置基準 1. 目的この設置基準は 立川市雨水浸透施設設置補助金交付要綱 ( 以下 要綱 という ) の雨水浸透施設の設置にあたり 必要な事項を定めることを目的とする 2. 用語の定義補助対象の雨水浸透施設とは 雨水浸透ます 及び 雨水浸透管 とし 雨水浸透施設の設置に伴い発生する

目次 1. はじめに 実施工程

第 2 章 構造解析 8

土量変化率の一般的性質 ❶ 地山を切土してほぐした土量は 必ず地山の土量 1.0 よりも多くなる ( 例 ) 砂質土 :L=1.1~2.0 粘性土 :L=1.2~1.45 中硬岩 :L=1.50~1.70 ❷ 地山を切土してほぐして ( 運搬して ) 盛土をした場合 一般に盛土量は地山土量 1.0

目 次

<4D F736F F F696E74202D EBF97CD8A7793C1985F816991E F18D758B608E9197BF816A>

参 考 1. 工事請負契約書 2. 建設分野で使われるおもな単位 3.SI 単位換算率表

< F2D926E89BA968490DD95A882CC8E968CCC96688E7E91CE8DF49776>

Microsoft PowerPoint - 小杉先生HP.ppt

<4D F736F F D F88DB8E9D8AC7979D82C98AD682B782E9918A926B8E9697E1>

保 証 最 低 基 準

作成 承認 簡単取扱説明書 ( シュミットハンマー :NR 型 ) (1.0)

第 Ⅰ 部 Excel VBA による一次元圧密 FE 解析 1. 軟弱地盤の長期沈下と二次圧密慣用的一次元圧密解析は, 標準圧密試験結果を利用し実際地盤の圧密沈下量とその発生時間を予測する.1 日間隔で載荷する標準圧密試験では, 二次圧密の継続中に次の載荷段階の荷重が載荷される. 圧密期間を長くす

Microsoft Word - H25地盤支部(山木)

労働災害発生状況

積粘土と同様に上下で低く 中央で高い弓形分布を示す 図 () の I L は 長田 新庄 門真で 1 以上を示し 東大阪地域の沖積粘土の特徴である超鋭敏性が伺える ただし 鴫野の I L はかなり低い 図 (3) () の c v は 先の w L が反映されているが 特に新庄の中央部の圧縮性が高い

NC L b R

資料 1 柏崎刈羽原子力発電所 6 号炉及び 7 号炉 原子炉建屋等の基礎地盤及び周辺斜面の安定性 コメント回答 平成 28 年 4 月 15 日 東京電力ホールディングス株式会社 安田層下部層の MIS10~MIS7 と MIS6 の境界付近の堆積物 については, 本資料では 古安田層 と仮称する

Microsoft Word - SAUSE report ver02(です、ます).doc

<8B5A8F708E77906A89FC92F988C E FCD2E786477>

Microsoft PowerPoint - 測量学.ppt [互換モード]

来る条件とした また本工法は がけに近接して施工する場合 掘削及び混合 攪拌から 転圧 締固め施工時 施工に伴うがけへの影響を避けることが難しいので がけに影響を与えず施工出来る場合を条件とした 具体的にはバックホー等の施工機械を がけに近接配置して施工することを避けるとともに 特にがけ近接部分の転

16 コンクリートの配合設計と品質管理コンクリートの順に小さくなっていく よって, 強度が大きいからといってセメントペーストやモルタルで大きい構造物を作ろうとしても, 収縮クラックが発生するために健全な構造物を作ることはできない 骨材は, コンクリートの収縮を低減させ, クラックの少ない構造物を造る

L 型擁壁 (CP-WALL) 構造図 S=1/30 CP-WALL(B タイプ ) H=1900~2500 断面図 正面 背面図 製品寸法表 適用 製品名 H H1 H2 B 各部寸法 (mm) B1 B2 T1 T2 T3 T4 T5 水抜孔位置 h1 h2 参考質量 (kg) (

※ 現場実習

地盤情報DBの利用と活用方法

PowerPoint プレゼンテーション

< F2D91E6824F82558FCD2E6A7464>

泊発電所 地盤(敷地の地質・地質構造)に関するコメント回答方針

Microsoft PowerPoint - Soil_Mechanics_lec4_2

<967B95B6>

コンクリート工学年次論文集 Vol.32

1. 空港における融雪 除雪対策の必要性 除雪作業状況 H12 除雪出動日数除雪出動回数 H13 H14 H15 H16 例 : 新千歳空港の除雪出動状況 2. 検討の方針 冬季の道路交通安全確保方策 ロードヒーティング 2

リサーチ ダイジェスト KR-051 自然斜面崩壊に及ぼす樹木根系の抑止効果と降雨時の危険度評価に関する研究 京都大学大学院工学研究科社会基盤工学専攻特定教授杉山友康 1. はじめに 鉄道や道路などの交通インフラ設備の土工施設は これまでの防災対策工事の進捗で降雨に対する耐性が向上しつつある一方で

スライド 1

Transcription:

災害調査報告書 農業用水路工事現場における土砂崩壊災害の原因調査 独立行政法人 労働安全衛生総合研究所

目次 1 はじめに 1 2 災害の概要 1 3 災害調査の結果 2 3.1 現地調査 2 3.2 現場付近の地質 ( 調査図によるもの ) 3 3.3 簡易動的コーン貫入試験結果 3 3.4 採取試料の分析結果 4 3.5 一面せん断試験結果 10 3.6 崩壊の機序の検討 11 3.7 円弧すべり面法による解析結果 14 3.8 地質調査会社の資料に基づく検討結果 21 4 災害発生原因 再発防止策等 24 4.1 災害発生の原因 24 4.2 再発防止策 24 5 参考文献 25

1 はじめに 農業用水路工事現場において発生した土砂崩壊災害に関して 行政機関と連携の上 災 害原因調査を行ったのでその結果について報告する. 2 災害の概要 (1) 被災者死亡 3 名 (2) 工事の概要長さ約 778 メートルの農業用管水路を設置 埋設するもの (3) 災害発生状況被災者 3 人は1 次下請の甲社の労働者であり 被災者らは地表から深さ4m 程掘削した場所において 水路管を設置する作業を行っていたものである 災害発生時 当該現場においては被災者らの他 同社労働者 Aが法面の角度を確認しており ドラグ ショベルの運転手は災害発生現場付近の土砂を掘削して 不整地運搬車に土を積み込む作業を行っていた 管布設作業の一部であるシート張り作業は 管が地盤沈下しないための作業であり その手順は 次のとおりであった 1 ドラグ ショベルにより 約 4メートルの深さまで掘削する 2 掘削箇所の法面を約 60 度に形成した後 幅 8m 長さ 10mのシートを掘削後の地面を中心に両側が均等になるよう敷き 両法面にシートを仮止めする 3 砂利をドラグ ショベルのバケットで掘削後の地面に敷き 小型ローラーで転圧する 4 農業用水路用管をドラグ ショベルで転圧した砂利の上に下ろす 5 既設の管と新たに下ろした管を接続し 再度管の上面まで砂利を敷き詰め 小型ローラーで管の周りの砂利を転圧する 6 両法面に仮止めしたシートを取り 管を包むようにシートをたたむ 被災者 3 人は 水路管設置作業の一部であるシート張り作業の内 上記 2の作業を3 人で行っていたところ 3 人が作業をしていた法面上部にいた労働者 Aは 自分の立っている地面が動き出したことから 法面のシート仮止め作業を行っていた被災者 3 人に対し 逃げろ と叫んだ この声を聞いた3 人は 急いで作業を行っていた反対側の法面に向かったが 3 名とも顔以外の身体が土砂に埋まってしまったものである なお Aは逃げて被災しなかった また 法面上部に積まれた土砂は 災害発生日前日の管敷設の為に掘削した土砂であり 砂利を敷きシートを設置した後に埋め戻すため 掘削場所近くの法面に積んでいた 1

ものであり 災害発生当日掘削した土砂は全て他の場所に不整地運搬車で運搬していた とのことである (4) 災害発生現場の地層等について崩壊した箇所のすぐ横の地点の地層を測定したところ 1 地表から 80 センチメートルは赤土 砂利の層であった 2 地表 80 センチメートルから 184 センチメートルは粘土の層であった 3 地表から 184 センチメ-トルより下は泥炭の層であった なお 災害発生場所に湧水は認められていない (5) 建設現場図面における災害発生現場の土質は以前に実施したボーリング調査によると泥炭層となっている 発注者が作成した図面においては 保安スペースとして掘削箇所の底面から 45 度勾配を取った地点 ( 法面の上端より2m 離れた地点 ) より外側に土砂を積み込むよう計画していた 3 災害発生原因の調査結果 調査は 現場全体の概観把握を行うとともに 3ヶ所から地盤試料の採取 (2ヶ所でシンウォールサンプリングを実施 ) 及び簡易動的コーン貫入試験を3ヶ所で行った ここでは これら調査の分析結果等とともに 施工図及び災害後に測量された図面により 解析を行った結果などについて述べる 3.1 現地調査調査の結果 当該現場の状況の特徴的な事項を挙げる (1) 崩壊状況の外観救出のため一部地盤は除去されていたが その他は 災害当時の状況をほぼ維持していたと思われる 崩壊側の斜面は移動しているものの法肩 斜面の形状はそのまま残っていた さらに既設の管が崩壊地盤の上にあり 掘削底部にあった管が崩壊時に押し上げられていたと考えられた 法先又は底部からの円弧すべり崩壊が起こったと考えられる状況であった 崩壊せず残った側の掘削斜面の傾斜角度はほぼ施工計画どおりであった (2) 地盤の状況泥炭の特徴を示す水と練り返すと流動化する軟弱な地盤であった 水分がある箇所は足が容易に埋まり 一旦埋まるとなかなか抜けない状況であった 救助箇所付近の地盤内にコンクリートの破片が認められるなど 掘り返された痕跡が 2

認められた 3.2 現場付近の地質 ( 地質図によるもの ) 災害現場付近の地質調査図によると災害現場付近は 河川の氾濫原堆積物や泥炭地帯 であることがわかる 3.3 簡易動的コーン貫入試験結果 簡易動的コーン貫入試験結果を N 値に換算したものを図 -1 に示す 試験 1( 崩壊箇所から約 1m 離れた法肩 ) と試験 2( 崩壊箇所内部の救出の際に掘られた部分 ) の測定位置は 崩壊が起こった法肩側である 試験 3 は崩壊しなかった側の法肩で行った なお 図の縦軸の深さは 現地の地表面の高さを 0m としている 3ヶ所の試験箇所とも N 値は約 4 以下であり 軟弱な地盤であることがわかる 3 ヶ所の地盤強度を較べると 試験 3( 崩壊しなかった側 ) が若干ではあるが地盤強度が高く 試験 2( 崩壊部 : 救出箇所 ) が最も地盤強度が低いことがわかる 掘削部の両側では 地盤強度分布が異なっており 均一な地盤でなかった可能性がある なお 間隙水圧の影響から軟弱地盤には動的試験は必ずしも適した試験ではないが 異なった位置での地盤強度の比較やおおよその強度分布を知るのには十分であると考えられる 3

深さ h (m) 0.00 N 0 2 4 6 8 10 試験 1 1.00 試験 2 試験 3 2.00 3.00 4.00 5.00 6.00 図 -1 現場の N 値分布 ( 動的コーン貫入試験結果を N 値に換算 ) 3.4 採取試料の分析結果 試料の採取は崩壊部のA B 及びCの3 箇所で行った 今回 行った試験は 粒度試験 コンシステンシー試験 高有機質土の分解度試験 ( ファンポスト法 ) 土の有機炭素含有量試験 一面せん断試験である A: 崩壊土塊の内部 ( 救出のために掘削されたため表面に出ていた部分 上部 ) B: 崩壊土塊の内部 ( 救出のために掘削されたため表面に出ていた部分 下部 ) C: 崩壊土塊の先端 ( 対面の斜面とぶつかっていた箇所 ) なお シンウォールサンプリングは 上記の B と C の箇所で行った 4

写真 -1 一面せん断試験装置へのセッティング 写真 -2 試験後の供試体 5

写真 -3 一面せん断試験装置 (1) 採取試料の物理試験結果表 -1 に土の粒度試験結果 表 -2 に試験結果の一覧 表 -3 に高有機質土の分解度試験 ( ファンポスト法 ) 及び表 -4 に土の有機炭素含有量試験結果を示す 採取試料 A は 採取土の外観を詳細に観察すると2 種類の異なった土であることがわかった そのため A を A1と A2の2つに分けて分析を行った その結果 A1と A2 は全く異なった性質を持つことが判明した 試料 A2と B は 表 -1 の下部に示した粒径加積曲線からもわかるように A2と B の粒度分布はほぼ似通ったものとなった その一方で A1と C は 有機物が多く含まれていたため粒度試験の実施を途中で中止した 表 -2 に示す自然含水比を見ると A1が約 300 C が約 420 と高含水比である これは 有機物が多くあるため その有機物繊維内等の間隙に多量の水分が蓄えられているためと考えられる A1 C の両者とも塑性指数が 200 を超えており 高塑性な土に分類され 典型的な泥炭の特徴を示している 表 -3 に示すフォンポスト試験結果から 黒泥 ( 泥炭が分解し始めたもの ) に A1が該当し C が 泥炭 と分類出来る 一方 A2は粘土 B はシルトに分類される 表 -4 に示す土の有機炭素含有量を見ると Ph が 5 程度であり酸性度が強いのも泥炭の特徴を示している 6

通過質量百分率 (%) JIS A 1204 JGS 0131 A-2005-8 北海道の農業用水路工事現場調査件名における土砂崩壊災害 表 -1 粒土試験結果 土の粒度試験 ( 粒径加積曲線 ) 試験年月日 平成 17 年 12 月 6 日 試料番号 ( 深さ ) B A2 試 料 番 号 ( 深 さ ) B A2 ふるい分析沈降分析 粒径 mm 通過質量百分率 % 粒径 mm 通過質量百分率 % 粗磔分 % - 75 75 中磔分 % - 53 53 細磔分 % - 37.5 37.5 粗砂分 % - 1.2 26.5 26.5 中砂分 % - 0.3 19 19 細砂分 % 1.0 1.4 9.5 9.5 シルト分 % 53.1 46.0 4.75 4.75 粘土分 % 45.9 51.1 2 2 100.0 2mmふるい通過質量百分率 % 100.0 100.0 0.850 0.850 98.8 425μmふるい通過質量百分率 % 100.0 98.8 0.425 0.425 98.8 75μmふるい通過質量百分率 % 99.0 97.1 0.250 100.0 0.250 98.5 最大粒径 mm 0.250 2 0.106 99.7 0.106 97.6 60 % 粒径 D 60 mm 0.0117 0.0071 0.075 99.0 0.075 97.1 50 % 粒径 D 50 mm 0.0063 0.0048 0.0542 90.3 0.0566 94.3 30 % 粒径 D 30 mm 0.0018 0.0017 0.0387 85.2 0.0401 91.6 10 % 粒径 D 10 mm - - 0.0250 75.0 0.0255 88.9 均等係数 - - 0.0147 64.8 0.0148 80.8 曲率係数 U' c - - 0.0105 57.9 0.0106 72.7 土粒子の密度 ρ s g/cm 3 2.593 2.611 0.0075 52.8 0.0076 61.9 0.0038 40.9 0.0039 45.8 0.0016 29.0 0.0016 29.6 20 % 粒径 D 20 mm - - U c 使用した分散剤溶液濃度 溶液添加量 ヘキサメタ燐酸ナトリウム,10ml ヘキサメタ燐酸ナトリウム,10ml 100 90 粒径加積曲線 80 70 60 50 40 30 20 10 B A2 特記事項 0 0.001 0.01 0.1 1 10 100 粒 径 (mm) 0.005 0.075 0.250 0.850 2 4.75 19 75 粘土シルト細砂中砂粗砂細磔中磔粗磔 7

表 -2 土質試験結果一覧 土質試験結果一覧表 ( 基礎地盤 ) 調査件名 A-2005-8 北海道の農業用水路工事現場における土砂崩壊災害 整理年月日 平成 17 年 12 月 6 日 一般粒度 磔 砂 試 料 番 号 ( 深 さ ) 土粒子の密度 ρ s g/cm 3 自然含水比 ω n % 石分 (75mm 以上 ) % シルト分 1) 分 1) 分 1) 1) 粘土分 最大粒径 均等係数 曲率係数 (2mm~75mm) % (0.075mm~2mm) % (0.005mm~0.075mm)% (0.005mm 未満 ) % U c U c ' mm A1 A2 B C 2.160 2.611 2.593 2.075 299.3 66.2 59.7 424.9 0.0 0.0 2.9 1.0 46.0 53.1 51.1 45.9 2 0.250 - - - - コンシステン シ 特性 液性限界 ω L % 塑性限界 ω P % 塑性指数 I P 321.0 79.3 71.5 341.0 109.1 34.5 34.9 138.2 211.9 44.8 36.6 202.8 分 類 地盤材料の分類名 分類記号 強熱減量 L i % 黒泥 粘土 ( 高液性限界 ) シルト ( 高液性限界 ) 泥炭 (Mk) (CH) (MH) (Pt) 26.9 7.8 8.2 48.1 ph 5.03 5.41 5.39 5.04 特記事項 1) 石分を除いた 75mm 未満の土質材料に対する百分率で表す [1kN/m 2 0.0102kgf/cm 3 ] 表 -3 高有機質土の分解度試験 ( フォンポスト法 ) 調査件名 試験年月日 平成 17 年 12 月 6 日 試験者名 ( 独 ) 産業安全研究所 試料番号 ( 深さ ) A1 試料番号 ( 深さ ) C 色 暗褐色 色 暗褐色 しぼり出されるもの ( 色 ) 泥炭分 ( 暗褐色 ) 水は極少量 しぼり出されるもの ( 色 ) 泥炭分 ( 暗褐色 ) の水 残さい物 繊維分ほとんど無し ほぼ分解済 残さい物 1/3 程度の繊維分あり 分解度 H7 分解度 H5 特記事項 特記事項 8

間接測定法 直接測定法 間接測定法 直接測定法 表 -4 土の有機炭素含有量試験 J G S 0 2 3 1 土の有機炭素含有量試験 調査件名 試験年月日平成 17 年 12 月 15 日 試験者 ( 独 ) 産業安全研究所 試料番号 ( 深さ ) サンプルボートの質量 m 1 g A1 5.3813 5.2194 A2 5.6803 5.6493 ( 試料 +サンプルボート ) の質量 m 2 g 5.4171 5.2556 5.7168 5.6859 無機炭素測定用試料の質量 m 3 =m 2 -m 1 g 0.0358 0.0362 0.0365 0.0366 検量線を用いて得られた無機炭素の質量 m IC g 0.0000 0.0000 0.0000 0.0000 無 機 炭 素 含 有 量 C IC % 0.00 0.00 0.00 0.00 平 均 値 C IC % 0.00 0.00 サンプルボートの質量 m 4 g 5.4817 5.2429 5.6930 5.4499 ( 試料 +サンプルボート ) の質量 m 5 g 5.5074 5.2743 5.7323 5.4914 全炭素測定用試料の質量 m 6 =m 5 -m 4 g 0.0257 0.0314 0.0393 0.0415 検量線を用いて得られた全炭素の質量 m TC g 0.0034 0.0042 0.0006 0.0006 全 炭 素 含 有 量 C TC % 13.23 13.38 1.53 1.45 平 均 値 C TC % 土の有機炭素含有量 C TC % サンプルボートの質量 m 7 g ( 試料 +サンプルボート ) の質量 m8 g 有機炭素測定用試料の質量 m 9 =m 8 -m 7 g 検量線を用いて得られた有機炭素の質量 m OC g 有 機 炭 素 含 有 量 C OC % 平 均 値 C OC % 特記事項 試料番号 ( 深さ ) B C サンプルボートの質量 m 1 g 5.2311 5.1561 5.1476 4.9539 ( 試料 +サンプルボート ) の質量 m 2 g 5.2656 5.1914 5.1917 5.0058 無機炭素測定用試料の質量 m 3 =m 2 -m 1 g 0.0345 0.0353 0.0441 0.0519 検量線を用いて得られた無機炭素の質量 m IC g 0.0000 0.0000 0.0000 0.0000 無 機 炭 素 含 有 量 C IC % 0.00 0.00 0.00 0.00 平 均 値 C IC % 0.00 0.00 サンプルボートの質量 m 4 g 5.4353 5.4819 5.2601 5.4287 ( 試料 +サンプルボート ) の質量 m 5 g 5.4858 5.5326 5.2878 5.4574 全炭素測定用試料の質量 m 6 =m 5 -m 4 g 0.0505 0.0507 0.0277 0.0287 検量線を用いて得られた全炭素の質量 m TC g 0.0007 0.0007 0.0056 0.0060 全 炭 素 含 有 量 C TC % 1.39 1.38 20.22 20.91 平 均 値 C TC % 1.39 20.57 土の有機炭素含有量 C TC % 1.39 20.57 サンプルボートの質量 m 7 g ( 試料 +サンプルボート ) の質量 m8 g 有機炭素測定用試料の質量 m 9 =m 8 -m 7 g 検量線を用いて得られた有機炭素の質量 m OC g 有 機 炭 素 含 有 量 C OC % 平 均 値 C OC % 特記事項 13.31 1.49 13.31 1.49 間接測定法 :C IC =m IC /m 3 100 直接測定法 :C OC =m OC /m 9 100 C TC =m TC /m 6 100 C OC =C TC -C IC 9

Shear stress (kpa) 3.5 一面せん断試験結果泥炭には繊維分が多く含まれるため一面せん断試験は不向きだと言われているが B 点から採取した試料にはシルト分が多いため 一面せん断試験 ( 定体積 ) が可能であった その結果を図 -2 に示す Peat direct shear 25 kpa-repeat 50 kpa-repeat 75 kpa c',f' ccu, fcu 線形 (c',f') 線形 ( ccu, fcu) 80 70 60 y = 0.5158x + 17.33 R 2 = 0.8295 50 40 y = 0.7201x + 13.623 R 2 = 0.9442 30 20 10 0 0 10 20 30 40 50 60 70 80 Normal stress (kpa) c cu, cu Total stress- CU condition- c cu, cu Normal stress Shear stress (kpa) (kpa) 25.848 27.488 50.148 49.65 73.656 52.04 c cu (kpa) 17.33 cu (deg) 27.28 図 -2 一面せん断試験結果 10

3.6 崩壊の機序の検討 平面図 ( 崩壊後に測量したもの ) と施工計画図から 現場の三次元立体図を描くと図 -3 のようになる Location of slope failure Bibai, Hokkaido 図 -3 現場の三次元立体図 ( 崩壊後の測量結果を基に作成 ) 図 -4 崩壊前と崩壊後の断面図 図 -4 は 崩壊前と崩壊後の断面図を示したものである 崩壊が円弧すべりであったと 仮定すると法肩と法尻の位置から 円弧すべりの位置が特定できる 11

図 -5 崩壊前と崩壊後の断面図 ( 積みおきされた土砂量の推定 ) 図 -5 は 図 -4 から積み置きされた土砂量を推定するために崩壊土砂部をハッチで示し たものである 3.6 m 程度 ( 推定 ) 50 cm 程度 ( 推定 ) 図 -6 積み置きされた土砂の推定図 3 次元マップによる崩壊前後の土砂量の計算及び図 -4.4 図-4.5 の推定から 積み置きされた土砂は 図 -6 に示すように 土砂が置かれていない法肩の幅を 50cm とすると 高さ 3.6m 程度まで積み上げられていたものと推定される 土砂が置かれていない法肩の幅を 1m50cm とすると高さは 4m を超えることが考えられる ただし 土砂が置かれていない法肩の幅は 1m50cm 積み上げられた土砂の高さは約 3m であったとの情報もある 12

本報告では 土砂が置かれていない法肩の幅 (s) 積み上げられた土砂の高さ (h) をパラメーターとして検討を行った 検討結果は後述するが 図 -20 及び図 -21 に示すと おりである 13

図 -7 崩壊が円弧すべりであったと仮定した場合の崩壊の機序推定図 14

10 mm 8 mm 3.7 円弧すべり面法による解析結果 円弧すべり面法を用いて解析した結果を示す ここでは解析は 次の事項についてそれぞれ行った 1 発注内容どおりの断面図における安全率 FS と C の関連性 2 土砂が積み上げられた断面図における安全率 FS と C の関連性 ( 災害後の地形形状から 崩壊前において積み上げられた土砂の量を推定した ) 3 発注時に計画されていたとおりの断面図において 4の逆解析で得られた C を用いて FS を求める 4 土砂が積み上げられた断面図において 安全率 FS がほぼ1となる C を用いて円弧すべり面を求める ( いわゆる逆解析を行った ) (1) 発注書どおりの断面図における安全率 FS と C の関連性図 -8 のように発注時に計画されていた断面形状で土砂が積み上げられていた場合の安全率 FS と C φの関連性について検討した結果を図 -9 に示す これによると粘着力 C が 15kPa あればせん断抵抗角 φが 0 であってもほぼ安定する可能性が高いことがわかる Peat, = 11 kn/m 3, C = 0 kpa, = 0 Peat, = 11 kn/m 3 図 -8 掘削断面図 ( 計画上の仮設図 ) Geometry of trench excavation (construction plan) 15

Factor of Safety (FS) 10 mm 8 mm 3 2 = 0 = 5 o = 10 o = 15 o = 20 o = 25 o = 30 o Ordinary method (Construction plan) 1 0 0 5 10 15 20 25 30 35 Cohesion, C (kpa) 図 -9 安全率 FS と C の関係 Relationship between FS, C and (2) 土砂が積み上げられた断面図における安全率 FS と C の関連性図 -6 の推定図のように土砂が積み上げられた場合 ( 図 -10) の安全率 FS と C φの関連性について検討した結果を図 -11 に示す これによると粘着力 C が 15kPa あってもせん断抵抗角 φが 20 以下であれば不安定となる可能性が高いことがわかる Peat, = 11 kn/m 3, C = 0 kpa, = 0 Peat, = 11 kn/m 3 図 -10 掘削断面図 ( 崩壊前の推定図 ) Geometry of trench excavation (Before slope failure) 16

Factor of Safety (FS) 10 mm 8 mm 3 2 = 0 = 5 o = 10 o = 15 o = 20 o = 25 o = 30 o Ordinary method (Before failure) 1 0 0 5 10 15 20 25 30 35 Cohesion, C (kpa) 図 -11 安全率 FS と C の関係 Relationship between FS, C and (3) 発注時に計画されていたとおりの断面の安全率の計算 ((4) の逆解析結果から求めた C を採用 ) (4) に示す逆解析結果と図 -2 に示す一面せん断試験結果から推定できる C φ を用いて検討した結果を図 -13 に示す これによると安全率 FS は 1.4 であり 当初計画どおりでは安定していた可能性が高いと判断できる Peat, = 11 kn/m 3, C = 0 kpa, = 0 Peat, = 11 kn/m 3, C = 13 kpa, = 26 図 -12 掘削断面図 ( 計画上の仮設図 ) 17

Geometry of trench excavation (construction plan) 図 -13 円弧すべり面法による解析結果 Slope stability analysis (Ordinary method) (4) 土砂が積み上げられた断面の安全率の計算 (Fs がほぼ1となるような C を採用 ) Fs がほぼ 1 となる逆解析と図 -2 に示す一面せん断試験結果から推定できる C φ を用 いて 想定された高さまで土砂を積み上げた場合について いくつかの円弧すべり面法で 計算を行った結果のすべり面の位置等を図 -15 から図 -17 に示す 18

10 mm 8 mm Peat, = 11 kn/m 3, C = 0 kpa, = 0 Peat, = 11 kn/m 3, C = 13 kpa, = 26 図 -14 掘削断面図 ( 崩壊前の推定図 ) Geometry of trench excavation (Before slope failure) 図 -15 円弧すべり面法による解析結果 Slope stability analysis (Ordinary method) 19

図 -16 円弧すべり面法による解析結果 ( ビショップ法 ) Slope stability analysis (Bishop s simplified method) 図 -17 円弧すべり面法による解析結果 ( ヤンブー法 ) Slope stability analysis (Janbu s simplified method) 20

以上の検討結果より 発注時に計画されていたとおりに作業が行われていたと仮定した場合は 安全率が1.4 程度となる このことから 計画どおり施工した場合には 実際に起こったような大変形を伴う崩壊には至らなかった可能性が否定できない また 逆解析で求めた C はそれぞれ 13 26 となった この値は 一面せん断試験より求めた値 (17 27) とほぼ近い値といえる 一面せん断試験結果とほぼ相応していることから本検討の妥当性があると言える 3.8 地質調査資料に基づく検討結果 災害後に オランダ式二重管コーン貫入試験 標準貫入試験などによる地盤調査が実施されており これらのデータに基づき 斜面の安定性について検討した ただし これらのデータに基づく検討に当たって 次のような点に留意する必要がある 1 測定箇所が崩壊箇所の周辺であるため 必ずしも崩壊部の地盤強度そのものを表していない可能性がある 2 崩壊箇所背部の測定箇所は 積み置きされた土砂が一ヶ月程度あった場所のため 圧密が進行し 強度が増加している可能性がある ( 地質調査会社の報告書においてもその旨が記載されている ) 3 測定値に若干のばらつきがある そのため 測定値のばらつきを考慮する必要がある 測定結果を図に表示すると図 -17 のようになった これを式に基づきcに変換すると図 18 のようになる これらのデータから層毎に平均強度と標準偏差を求め その値を用いて 円弧すべり面法による解析及び信頼性解析を行った 積み上げられた土砂について 図 -19 に示す s w と h を変化させて 解析を行った なお s w 及び h は次のとおりである s: 土砂と法肩の間の距離 w: 土砂の幅 h: 土砂の高さその結果 1 sと h の両者の影響が大きく sが小さくなり h が高くなると 崩壊危険性が高くなることが示された 2 発注時の仮設計画どおり ( つまり法肩から 2m 残し 高さが 2m 以下 ) であれば 崩壊しなかった可能性が高い 3 法肩から 1.5m 残し 高さが 3m であったとの情報もあり その場合 安全率は 1.3 程度となり 崩壊しなかった可能性が高い 現実に崩壊が起こっているのに対して 上記 3 の結果では 崩壊しなかった可能性が高 21

Depth (m) い という結果となった この理由としては 崩壊部の地盤強度が実際にはこの情報値より小さかった 又は積み上げられた土砂の重量がこの情報値より大きかったなどが考えられる 積み上げられた土砂の重量 位置 については 関係者へのヒアリング等に基づくと後者の推定は否定され 前者の崩壊箇所の地盤が周囲と較べて異なっていたということになる その後の調査結果によると 崩壊地盤の上部は 埋戻し土 であり 崩壊下部にはシルト層があったとの報告があった 埋戻し土 は強度が期待できないことと コンクリート片などが含まれていたとのことから 埋戻し土 の重量とともに崩壊の誘因となり 崩壊に繋がった可能性が否定できないものと考えられる Cone resistance, q c (kpa) 0 500 1000 1500 2000 2500 3000 3500 0 1 2 C1 (SP1834) C2 (SP1865) C3 (SP1950) 3 4 5 6 7 8 9 図 -17 オランダ式コーン貫入抵抗値 (qc) の深度分布図 22

Factor of Safety, FS Depth (m) Cu (kpa) 0 10 20 30 40 50 60 70 0 1 C1 (SP1834) C2 (SP1865) C3 (SP1950) UU tests (SP1865) UU tests (SP1866) Average 2 3 4 5 図 -18 オランダ式コーン貫入抵抗値 (qc) 等より推定した Cu の深度分布図 Surcharge load, t = 11.5 kn/m 3 H 1:1 1:1 S W 図 -4.19 掘削断面図 1.6 1.5 1.4 1.3 1.2 1.1 FS = 1.1 W = 8 m S = 2 m S = 1.5 m S = 1 m S = 0.5 m S = 0 m W = 10 m S = 2 m S = 1.5 m S = 1 m S = 0.5 m S = 0 m 1.0 0.9 1 2 3 4 5 6 Embankment height, H (m) 図 -20 安全率 FS と S: 法肩スペース H: 積み上げ高さとの関係 23

Probability of Failure, PF (%) 60 50 40 30 20 W = 8 m S = 2 m S = 1.5 m S = 1 m S = 0.5 m S = 0 m W = 10 m S = 2 m S = 1.5 m S = 1 m S = 0.5 m S = 0 m 10 PF = 10% 0 1 2 3 4 5 6 Embankment height, H (m) 図 -21 破壊確率 PF と S: 法肩スペース H: 積み上げ高さとの関係 4 災害発生原因 再発防止策等 4.1 災害発生の原因以上のことを勘案すると 本災害の原因としては 次の事項が考えられる 1. 土を積み上げたため その重量が崩壊要因となっていたところにおいて そのすぐわきを掘削したことによる側方応力の解放による崩壊要因の両者が合わさり 本件のような崩壊が引き起こされたと考えることが出来る すなわち 押さえとなっていた部分を掘削したことにより すべり面に働くせん断力 が減少し 積み上げられていた土砂の重量と土塊重量による起動力 がそれを上回ったことから 地盤が変位し 土砂の重量が釣り合うところまで動いたと考えられる なお 当該崩壊現象の推定図 ( 円弧すべりを仮定 ) を時系列に略図で図解すると図 -.8 のようになる 2. 施工者が発注時に示された計画よりも土砂を積み上げたにもかかわらず 計測結果を用いた安定計算が行われておらず 安全な施工管理も行われていなかった 3. 発注者においても計測結果を用いた安定計算が行われていなかった また 当初計画以上に土砂を積み置きした場合 危険性が増すことが施工者に十分には伝わっていなかったと考えられること 4.2 再発防止対策本災害の対策としては 次のようなことが考えられる 1. 地盤強度の計測結果に基づき 仮設時の安定計算を行い それに基づく施工を行うこと 2. 泥炭のように軟弱な地盤においては 円弧すべりなどの崩壊が発生する危険性が高いこ 24

とを十分に認識したうえで施工 施工管理を行うこと 3. 法肩に土砂等の重量物を出来るだけ置かないようにすること やむを得ない場合は 安 定計算を行ったうえで積み上げる土砂の量や位置を決定し 施工管理を行うこと 5 参考文献 1) ( 独 ) 北海道開発土木研究所 : 泥炭性軟弱地盤対策マニュアル 2002 年 3 月 2) ( 社 ) 地盤工学会編 : ジオテクノート 14 泥炭のお話し 2004 年 25

付録 -1 土質用語の簡単な説明 土質用語について簡単な説明を以下に示す. コンシステンシー物体の硬さ, 軟らかさ, もろさ, 流動性などの総称. 地盤工学では練り返した細粒土の含水量による液状から固体状までの状態変化を指す. 土粒子密度 土粒子の単位体積当たりの質量. 土粒子の密度は次式 m S S V S で表される. ここで,mS: 土粒子の質量,VS: 土粒子の体積 含水比 土に含まれる水の質量 ( 含水量 )mw をその土の乾燥質量 ms に対する比 で表されたもの. 一般に百分率で表す. 自然含水比 自然状態の含水比のこと 塑性 除荷後も変形が残留するような材料物性のこと コンシステンシー 限界 練り返した細粒土は水分の変化に伴って液体, 塑性体, 半固体, 固体と状態が変化する. この変移点をそれぞれの液性限界, 塑性限界, 収縮限界といい, 総称としてコンシステンシー限界という. ちなみに, 実際の土では含水比の変化に伴うコンシステンシーの状況変化は連続的であり, ある含水比を境に急変するものではなく, ある含水比の幅をもってコンシステンシー限界が存在する ( 付図 -1 参照 ) 収縮限界 w S 塑性限界 w P 液性限界 w L 概念の定義 固体半固体塑性体液体 実際の状態 固体半固体塑性体液体 0 小 含水比 w (%) 大 付図 -1 各限界の定義と実際の状態 26

液性限界 細粒土のコンシステンシー限界の一つで, 練り返した細粒土が塑性体状態と液体状態の境界にある時の含水比のこと. 試験方法は JIS に規定されており付図 -2 の測定器を用いて流動曲線を求め, 落下回数 25 回に相当する含水比を液性限界と規定している. 塑性限界塑性指数コンシステンシー指数液性指数 付図 -2 液性限界試験器 細粒土のコンシステンシー限界の一つで, 練り返した細粒土が塑性状 態と半固体状態の境界にある時の含水比のこと. 試験方法は JIS に規 定されている. 細粒土が塑性を示す含水比の範囲のことを表す指数. 塑性指数 IP は 以下の式で表される. IP wl wp ここで,wL: 液性限界,wP: 塑性限界である. 塑性指数が大きな土を 塑性的な土という. 細粒土の硬軟や安定の程度を表す指数. 液性限界 wl, 塑性限界 wp か ら以下の式にて導かれる. I C wl w wl w w w I L P P コンシステンシー指数 IC が 1 よりも大きいときは安定な状態であるこ とを示している. 液性指数は相対含水比とも呼ばれ, 与えられた含水比における土の相 対的な硬軟を表す指数で以下の式にて表される. I L w wp w w w w I L P P P 液性指数 IL が 0 に近いほど土は安定であり, 大きくなるほど圧縮性は 大きく, 鋭敏なことを示す. 27