運輸交通機関用太陽水素メタノールエネルギーシステム

Similar documents
17_19

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Manoeuvring Performance of the Fishing Boat Modified by a Bulge by Yasuo Yoshimura, Member Shiro Suzuki Ning Ma, Member Yoshiyuki Kajiwara Summary Fis

m 50m 4,380 ton 80m 2 110kW The Offshore Floating Type Wave Power Device "Mighty Whale" Open Sea Tests; Part1 : An overvie

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

原稿.indd

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

技術研究報告第26号

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

JFE.dvi

28 Horizontal angle correction using straight line detection in an equirectangular image

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

Note.tex 2008/09/19( )

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

chap03.dvi

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

I

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

塗装深み感の要因解析

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

Journal of Textile Engineering, Vol.53, No.5, pp



untitled

mt_4.dvi

数学の基礎訓練I


Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

24 Depth scaling of binocular stereopsis by observer s own movements

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

国土技術政策総合研究所 研究資料

空気の屈折率変調を光学的に検出する超指向性マイクロホン

main.dvi

14 2 5

振動と波動

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

Classic HD:ŠŸŠp”Ò:Discovery:‘‚ŠÞ:‚²„¤:Ÿ_Ł¶:Simulation_for_HRO.dvi

日立金属技報 Vol.34

Part () () Γ Part ,

実船における YP4 鋼の使用状況とその実績評価 Application ratio of high tensile steels (w%) Ratio of each type of steel (w%) R & D for TMCP Technology R & D for TMCP Steel

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

J. Jpn. Inst. Light Met. 65(6): (2015)

S-6.indd

untitled

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

untitled

.I.v e pmd


Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

食品工学.indb

untitled

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

電子部品はんだ接合部の熱疲労寿命解析

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization


Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

December 28, 2018

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

013858,繊維学会誌ファイバー1月/報文-02-古金谷

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

鉄鋼協会プレゼン

QMI_10.dvi

QMI_09.dvi

燃焼圧センサ

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

SICE東北支部研究集会資料(2012年)

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

0801391,繊維学会ファイバ12月号/報文-01-西川

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

放水の物理的火災抑制効果に着目した地域住民の消火活動モデル

Field Measurement of Aeolian Sand Flux over a Sand Dune Slope Junaidi Keiko UDO, Shota MITSUSHIO, JUNAIDI, Shin-ichi AOKI, Shigeru KATO and Akira MANO

/02/18

5b_08.dvi

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

LAGUNA LAGUNA 8 p Saline wedge at River Gonokawa, Shimane Pref., Japan Saline water intrusion at estuary r

撮 影



Mott散乱によるParity対称性の破れを検証

udc-2.dvi

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

Transcription:

Drift Prevention of Disabled Ships in Rough Seas by Shoichi HARA, Katsuji TANIZAWA, Kenji YAMAKAWA, Kunihiro HOSHINO, Kazuhiro YUKAWA, Jun HASEGAWA, Michio UENO, Makiko MINAMI, Nobuo KIRIYA Shigeo OHMATSU, Toshihiko SARUTA and Michio OKAMOTO Abstract The disabled tanker was broken into two parts due to rough waves and bow part of the ship drifted to the sea shore in the heavy oil leakage accident of Russian ship named Nakhodka January in 1997. The loaded heavy oil flew out of the bow section of the ship continuously and caused the biggest marine pollution in Japan. Approximately 6,5 kl heavy oil leaked out in this accident. If the technology for the recovery of the drifting bow part of disabled ship in rough waves had been available, the serious disaster would be prevented from occurring. This report is based on the research results of 5 year research project sponsored by the Ministry of Land, Infrastructure and Transport from 1998 to 3. The direct motivation of starting the project is Nakhodka incident. The purpose of this project is to predict the drift motion of disabled ships in rough sea and to tow them safely in order to prevent the secondary disaster such as collision, explosion and strand. The Optimum Towing Support System (OTSS), which can estimate the drift motion, towline tension, maneuvering method during tow and towing power of tow boats, has been developed to provide with the Japan Coast Guard and salvage companies. Further, the computer program for predicting the drift course considering wave effect has been also developed to be provided with the Japan Coast Guard. 1

3 3 1 3 11 8 4 47 47 6 8 88 98 14 14 16 19 19 111 113 119 1 1 11 1 13 143 1. 9 1 6 1999 1 11 LNG ( ) 4 (1) () (3) (4) (1) () (3) (4)

4..1.1.1 () 1)) 1)) 3) () (-1) Fig..1.1-1 Fig..1.1-1 OE-XEYE O-XY = + + = + + = + + ), ( ),, ( ), ( ), ( ),, ( ), ( ), ( ),, ( ), ( Ar Ar A W W W Ar Ar A W W W Ar Ar A W W W U N T H N U N U Y T H Y U Y U X T H X U X θ χ β θ χ β θ χ β (1) X,Y,N,W A U β H, W TW χ UAr θar UC ψc UA ψa UAr θar C Ar A U U U U + = () 3

X E O E V : Drift speed ψ V ψ B U A ψ A ψ W ψ C U C V : Drift direction : Bow direction : True wind speed : True wind direction : Wave direction U C : Current speed : Current direction ψ B ψ W U A U Ar U Drift U Ar : Relative wind speed : Relative wind direction θ Ar U : Ship speed relative to water ψ U ψ A - β ψ V Wave χ Wind θ Ar ψ U ψ C Rel. Wind Rel. Drift Current : Direction of U χ : Relative wave direction Y E β : Oblique angle relative to water ψb Fig..1.1-1 Coordinate system. ψ B = ψ U + β (3) Table.1.1-1 Principal dimensions of a training ship. Fig..1.1- Hydrodynamic forces and moment acting on underwater ship s hull due to oblique motion obtained by tank test for a training ship. ψw χ χ = ψ W ψ B (4) V, ψv V + = U U C (5) (-) (1) V ψv Table.1.1-1 X,Y,N ψv ψb 1) Fig..1.1-36 1 1/ρLdU 1/ρL du (λ/l).8 XW,YW,NW 1) Fig..1.1-3 1/ρgL(Hw/) 1/ρgL (Hw/) 3 XA,YA,NA 4) Fig..1.1-4 1/ρAUAr L 1/ρAUAr L 3 ρa Fig..1.1- Fig..1.1-3Fig..1.1-4 (1) ψb Newton -Raphson V.1 36 4

X W' YW' NW'.1.5. -.5 -.1 45 9 (deg) 135 18. -.1 -. -.3 -.4 45 9 (deg) 135 18..1. -.1 45 9 (deg) 135 18 Fig..1.1-3 Steady wave forces and moment calculated with 3-D. panel method for a training ship (?/L=.8)?/L=.8( T 7.34s) m? W= UA=15m/s? A=33 UC=.514m/s (1.kt)? C=1 (1) Fig..1.1- Fig..1.1-3Fig..1.1-4 Table.1.1-4 Fig..1.1-5 1)) Table.1.1- Fig..1.1-5 3 (1) 1) ß X A' YA' NA'..1. -.1 -. -.3.1.5. -.5 -.1.1.5. -.5 -.1 9 18 Ar 7 (deg) 36 9 18 Ar 7 (deg) 36 9 18 Ar 7 (deg) 36 Fig..1.1-4 Wind forces and moment obtained by wind tunnel test for a training ship. Table.1.1- Solutions for steady drifting conditions of a training ship in wind, wave and current. No. V( kt ) V (deg) B (deg)(deg) U Ar (m/s) Ar (deg)(deg) 1 3. 96 16. 5 153. 6-6. 4 13. 174. 5 -. 8 4. 165. 3-3. 156. 8 13. -9. -179. 9 3 1. 1-147. -15. 4 74. 6 14. 75 73. 4 85. 3 4. 66-113. 7 75. 6-14. 4 15. 1-11. 8-149. 5 5) Fig..1.1-5 Drifting velocity, direction and posture of a training ship in wind, wave and current. 5

Table.1.1-3 Principal dimensions of a tanker model. (3) 6)7) T537 T54 V ψv β Table.1.1-4 Experimental conditions. (3-1) Table.1.1-3 75.6N(3.kgf) ψb (Pitch ang.) 55% (Roll ang.) (Yaw r.) Fig..1.1-7 Fig..1.1-8 Fig..1.1-7 Fig..1.1-8 Fig..1.1-6 Fig..1.1-8 ψv ψv-18 Fig..1.1-7 Fig..1.1-8 χi 7 Fig..1.1-6 χi Table.1.1-4 T537 T539 (λ/l).4 T543 T544.4m A 8) T538 T54.3 T54 B A B Fig..1.1-9 Fig..1.1-9 ψb V ψv β (3-) Fig..1.1-6 Fig..1.1-6 9 Fig..1.1-6 T538 T54T544 ψb ψv β Fig..1.1-9 A B 6

Fig..1.1-6 Trajectories of drifting motion of a tanker model. Fig..1.1-7 Time history of T537. Fig..1.1-8 Time history of T54. Fig..1.1-9 Averaged values in steady drifting conditions of a tanker model. Fig..1.1-7( A) Fig..1.1-8( B) (Pitch ang.) (Roll ang.) (Yaw r.) Fig..1.1-9 1 7

(4) (4-1) 1999 Table.1.1-5 Photo.1.1-1 A Table.1.1-5 Photo.1.1-1 A 3 Photo.1.1-1 A A1 7 :17 SOS 8 1:4 A A3 A4 A4 A7 E1 E4 EPIRB(Emergency Position Indicating Radio Beacon) B 1 Photo.1.1-1 Disabled ship in drifting condition, wind from starboard side. UC ψc Photo.1.1-1 ψc UC=1.65ktψC=175.3 8 6: 11m/s 9: 11m/s 8 A1 A A V ψv Table.1.1-6 Fig..1.1-11 A Table.1.1-5 Principal dimensions of a disabled ship. (4-) (4--1) deg 36deg deg Table.1.1-3.179m Table.1.1-5 A 5.8 3.5 Table.1.1-3 5.5 3.

Fig..1.1-1 Trajectory of a drifting ship;a1-a4 (A4-A7; towed path),epirb; E1-E4, B; life buoy and current data. Table.1.1-6 Averaged drifting characteristics from point-a1 to point-a in Fig..1.1-11. Fig..1.1-11 Fig..1.1- Fig..1.1-9deg deg 5.8 4 Table.1.1-7 Solutions for steady drifting conditions of a disabled ship in wind and current. Fig..1.1-11 Hydrodynamic forces and moment acting on underwater ship s hull due to oblique motion obtained by tank test for a tanker model. Fig..1.1-13 Table.1.1-6 A ψb -5.5deg Fig..1.1-1 Fig..1.1-4 Fig..1.1-4 Photo.1.1-1 (4--) (1) Table.1.1-7 4 9

(5) Fig..1.1-1 Wind forces and moment obtained by wind tunnel test for a bulk carrier model. Fig..1.1-13 Comparison of drifting condition, observed and estimated for a disabled ship in wind and current. Fig..1.1-11 1) Ueno, M., Nimura, T. On steady drifting motion of a ship in waves, Fig..1.1-1 Proceedings of 5th IFAC conference on manoeuvring and control of marine craft, (), pp. 393-398 ) 74 1

() pp. 315-318 3) HAZMAT ()pp. 345-346 4) Risk Analysis 189 (1)pp. 71-8 5) 16 (1986)pp. 93-1 6) 1 (1)pp. 37-4 7) 13 () pp. 63-7 8) () 17 Suppl. 1(1997)pp. 317-3.1.. =6m =.5m =.5m) (1) OCIMF 1) HAZMAT ) OCIMF Wind-Wave Drift Factor OCIMF Formal 3 3) (-1) ( Fig..1.-1 Table.1.-1 Principal dimensions. 11

3..5 Exp. F D =71.7V. Carriage Rail F D (N) 1.5 1..5 Heaving rod Gimbal mm Load cell.5.1.15. V(m/s) Fig..1.-3 Drug on the D body as a function of speed. 4 mm T V.88sec1.sec1.3sec1.57sec Fig..1.- Measuring equipment of D floating body motions. kb / 1.51.8.53.419 T V λ V Table.1.-1 k V HW =.65H V Fig..1.- HW / λ V Fig..1.-3 V(m/s) 5.m FD(N) 1.m 8.m CD=1.449 (-).4 kb / ~.k W.cm~7.cm kb /.5.7. kw / λ.1~.64 Fig..1.-4 ISSC ( V / Bg ) Modified B = 4mm Pierson-Moskowitz ISSC a H T V V 5 4.11 Tvω T ω v Φζζ ( ω) = HvTv exp.44 π π π.419:tv=1.57sec 1.51: Tv=.88sec Fig..1.-5 (1) Fig..1.-4 1

Drifting speed (V/ Bg).1.8.6.4. k Exp. a=1.499 Drifting speed (V/ Bg).1.8.6.4. k Exp. a=1.51.1..3.4.5.6.7 H W /.1..3.4.5.6.7 H W / Drifting speed (V/ Bg).1.8.6.4. k Exp. a=1.434 Drifting speed (V/ Bg).1.8.6.4. k Exp. a=1.3679.1..3.4.5.6.7 H W /.1..3.4.5.6.7 H W / Drifting speed (V/ Bg).1.8.6.4. k Exp. a=.6839.1..3.4.5.6.7 H W / Fig..1.-4 Relation between wave slope and drifting speed (D body in regular waves). Fig..1.-5 Relation between wave slope and drifting speed (D body in irregular waves). (3) (3-1) ( =5m =8.m =4.5m) Fig..1.-6 GPS Fig..1.-4 Fig..1.-5 184mm 7g Heave.7secRoll.6sec.7 13

1 34 mm 54 mm 5 134 mm Wave height : Hw (m).8.6.4. Regular wave Irregular wave H w / λ = 1 / 1 15 mm 34 mm 33 mm 4 6 8 1 Wave length λ : (m) Weight = 6.35 kg Natural heave period =.7 sec Natural roll period =.6 sec Fig..1.-6 Spherical buoy used for the measurement. Fig..1.-7 Waves used for the drifting ( V speed measurement of the buoy λ, H are used on irregular waves). W Fig..1.-7 (3-) V 7.6m Fig..1.-8 Fig..1.-9 5.m ( V / Dg ) D = 34mm a 5m Stokes Fig..1.-8 λ =.5m ~1.5m Stokes.5m 1m Fig..1.-7 H W λ 1/1 Fig..1.-9 λ =.m ~1m ISSC λ = 5.m Stokes T.8sec ( 1m ) V 1.13sec ( m )1.39sec ( 3m ) HW =.65H V 14

Drifting speed (V/ Dg) Drifting speed (V/ Dg).3.5..15.1.5.3.5..15.1.5 kd/=1.91, λ =.5 m Exp. Stokes Drift..4.6.8.1.1.14 Hw / λ kd/=1.364, λ =.7 m Exp. Stokes Drift a =.858 a = 1.5317 Drifting speed (V/ Dg) Drifting speed (V/ Dg).3.5..15.1.5.3.5..15.1.5 kd/=1.59, λ =.6 m Exp. Stokes Drift kd/=1.194, λ =.8 m Exp. Stokes Drift a = 1.18..4.6.8.1.1.14 Hw / λ a = 1.7114..4.6.8.1.1.14 Hw / λ..4.6.8.1.1.14 Hw / λ.3.3 Drifting speed (V/ Dg).5..15.1.5 kd/=.955, λ = 1. m Exp. Stokes Drift a = 1.493 Drifting speed (V/ Dg).5..15.1.5 kd/=.637, λ = 1.5 m Exp. Stokes Drift a = 1.659..4.6.8.1.1.14 Hw / λ..4.6.8.1.1.14 Hw / λ Fig..1.-8 Relation between wave slope and drifting speed (Buoy in regular waves : λ=.5m1.5m) 1/1 (.83) Fig..1.-8 Fig..1.-9 (4) Fig..1.-8Fig..1.-9 15

. Drifting speed (V/ Dg) Drifting speed (V/ Dg).3.5..15.1.5.3.5..15.1.5 kd/=.478, λ =. m Exp. Stokes Drift kd/=.191, λ = 5. m Exp. Stokes Drift a = 1.518..4.6.8.1.1.14 Hw / λ a = 1.1535 Drifting speed (V/ Dg) Drifting speed (V/ Dg).3.5..15.1.5.3.5..15.1.5 kd/=.318, λ = 3. m Exp. Stokes Drift kd/=.96, λ = 1. m Exp. Stokes Drift a = 1.5615..4.6.8.1.1.14 Hw / λ a = 1.8..4.6.8.1.1.14 Hw / λ..4.6.8.1.1.14 Hw / λ Fig..1.-9 Relation between wave slope and drifting speed (Buoy in regular waves : λ=.m1m).3.3 Drifting speed (V/ Dg).5..15.1.5 k v D/=.955, λ v = 1. m Exp. a = 1.467 Drifting speed (V/ Dg).5..15.1.5 k v D/=.478, λ v =. m Exp. a = 1.474..4.6.8.1.1.14 H W / λ V..4.6.8.1.1.14 H W / λ V.3 Drifting speed (V/ Dg).5..15.1.5 k v D/=.318, λ v = 3. m Exp. a = 1.364..4.6.8.1.1.14 H W / λ V Fig..1.-1 Relation between wave slope and drifting speed (Buoy in irregular waves) 16

. F W F D 1 F Fig..1.-1 = ρgd C H ω () W R W 8 Fig..1.-8 1 FD = ρac V (3) D A C D D R B D C W 1.5 C W 1. V D R g 1 λ C H W ω = (4) AC D λ Coefficient a.5 4. 3.. 1..5 1. 1.5. k Exp. (Regular wave) Exp. (Irregular wave) Cal. (5) C D =1.449.5 1. 1.5. k Fig..1.-11 Linear coefficient of wave drifting speed of the D body. (5) (5-1) C C W (4) (4) ( δ = H / λ ) W a 1 λ C AC w = (5) D Fig..1.-11 Fig..1.-4 aδ a Coefficient a.5 1.5 1.5 Exp. (Regular wave) Exp. (Irregular wave) Cal. (5).5 1 1.5 k D / Fig..1.-1 Linear coefficient of wave drifting speed of the body. D 17

C W C D Fig..1.-1 1 4) 5 C D =.9 5).5 1. 1.5. Fig..1.-8 k Fig..1.-9 a Fig..1.-13 nd order coefficient of wave drifting speed of the buoy..3 (5-) Stokes.15 U δ c = U kz = cπ δ e (6) g 1 1+ π δ + π k 4 δ 4 6) c Stokes U R R (7) kz U π δ e = (8) D g kd V (5-3) V = bδ (9) D g R Drifting speed (V/ Dg) Coefficient b.5..1.5 3 5 15 kd/.191.478.955 1.194 1.91 Exp. (Regular wave) Cal. Exp. (Regular wave) Cal. (1)..4.6.8.1.1.14 H W / Fig..1.-14 Wave drifting speed of the buoy. b = A π kz (1) kd R A e ds V D R g = aδ + bδ (11) b Fig..1.-14 (11) Fig..1.-13 Fig..1.-9 aδ + bδ b (1) 18

Fig..1.-15 Wave flume with a bottom step. kd /.5~1. (5-4) H W k Fig. V.1.-11 Fig..1.-1 H W k V (6-1) Fig..1.-15 x = (6) h - h x = - x = 9) 5) ζaζrζt 7) E 1 E = ρgζ (1) Newman 8) ζ h Yaw Serise 6 V 19

V = V n (13) V c C ω = (14) k 1 kh n = ( 1+ ) (15) sinh kh Vc ω k n AB ( E E ) V E V (16) A R = EA ERET V+ x = ± (1)~(15) (16) n k T n ( ζ ζ ) = ζ A (17) R k T φ φ / t φ t φ φ t φ = φ = () t φ φ t ln r c ( Q) φ φ t ( Q) ( Q) φ ( P ) φ ( P) ln r r S ln t n, ( P, Q) ( P) φ n φ t n ( P Q) ( P) ds (3) F D F D = n gζ (18) ρ (17)(18) n D R = 1 ζ pgζ A A F n ζ R 1 + ζ A ζ n R (19) k k ζ T ζ A () PQ n r(p,q) PQ c(q)q S w φ ζ cosh k( z + h) n t n = = k A ω cosh kh φ ζ coshk( z + h) cos( kx ω t (4) k A sin( kx ω t ) coshkh (5) ) n k 1 k n n ζ T ζ A (6-) 1),11),1),13),14) (1) S f S w S b z o-xz g ρ λ k,ω,ζa Dφ 1 = z + Dt S s Dx x Dt ( ) v( x)( φ φe φ ) ( x)( η η ) e (6) = φ v (7) η v(x)

x x M αω λ N = ( n, n r) v( x) = for x x x1 = x + βλ φ t 1 = NM for x < x or x > x φt Nds 1 n ss (8) 1 1 + NM z ( φ ) Nds+ Fg ss 1 + q ( φ ) n (33) α β F g α~1β 1 q % φ e η e φ φ e η η e φ e =, ηe = ( h + z) ζ A cosh k φe = sin( kx ω t) (9) ω cosh kh e A ( kx ωt) η = ζ cos (3) φ φ = n ( υ + ω r) (31) n υ ω φ t φ t = k n n + n ( φ υ ω r ) + n n (& υ + ω& r ) + n ω ( ω ( φ υ ω r ) 1 ( φ ) k n ω r ) (3) & υ &, ω 7) υ& ω& φ t υ& ω& (3) q = k n ( φ υ ω r + n ω ω r + n ω φ υ ω r φ = z v x t dz φ = v x dt z ) ( ) ( ) (36) (34) φ φ t φ φ t 4 (MEL) (6-3) (6)(7) ( e )( φ φe ) ( e )( η ηe ) (35) φ t (3) (33) n φt = n (& υ + ω& r) (37) n φt 1 = NM { ( φt z) Nds Fg } + s s (38) 1

Table.1.- Principal dimensions of floating body. (6-4) ( =6m =.5m =.5m) 1mm cm.5m.3m 95% 6 15) Fig..1.-16 Floating body and measuring equipment. Table.1.- Fig..1.-16 3 (6-5) Fig..1.-17(a)

k - B/ B/=.m k - B/>1.5 1. (x = m) k - B/<.5 1 1 (6) Fig..1.-18 x = ± 1 (6) Fig..1.-17(b)(9) 3. 1m (x = -1m) 3. 1m (x = 1m) x = m x = m Fig..1.-18(a,b,c) Fig..1.-18 Floating body motions, wave reflection and transmission coefficients and wave drifting force at x = m. 3

Fig..1.-18 (d,e) Fig..1.-18 (f) Fig..1.-18 (9) Fig. Fig..1.-18 Fig..1.-19 Fig..1.- x = 1m x = -1m Fig..1.-16(b).1.-18,19, Fig..1.-19 Floating body motions, wave reflection and transmission coefficients and wave drifting force at x = -1m. 4

Fig..1.-1 k- B/ <.6 x > 4.77 rad/sec 1 λ + / 5.345 rad/sec Fig..1.- k - B/ kx λ - x λ Fig..1.- Floating body motions, wave reflection and transmission coefficients and wave drifting force at x = 1m. 5

(7) () (4) HW kv Fig..1.-1 Wave drift force as a function of relative location of the body to the floor step. Fig..1.- Wave drift force as a function of wave number and relative location of the body to the floor step. 6

Stokes Stokes 1) OCIMFDisabled Tankers, Report of studies on ship drift and towage, Oil Companies International Marine Forum, ISBN 9886 63 3, (1981) ) HAZMATShip drift analysis for the Stokes Northwest Olympic Peninsula and the Stokes Strait of Juan de Fuca, Hazardous Materials Response and Assessment 6) Division, Office of Ocean Resources Conservation and Assessment, NOAA}, HAZMAT Report 97-3, (1997) 3) 19,(1),pp.151-16 4) (5) (1997) 5) ( ) 141,(1977), pp71-77,144,(1978), 3 15),16),17),18) pp.155-16 6) Kinsman,B.Wind Waves, Dover Books on Earth and Science, (1965),pp.48-58 7) Maruo, H.The drift of a body floating on waves, J.S.R., Vol.4, No.3, (196), pp.1 8) Newman, J.N. The drift force and moment on ships in waves, J.S.R., Vol.11, No.1, (1967), pp.51-6 9) 51 (1975), pp.131-15 1) Cointe, R., Geyer, P., King, B., Molin, B. and Tramoni, M. Nonlinear and linear motions of a rectangular barge in perfect fluid, Proc. of the 18th Symp. on x> Naval Hydro., AnnArbor, Michigan, k - B/.6 (199), pp.85-98 11) Tanizawa, K.A Nonlinear Simulation (19),(),(1) Method of 3-D Body Motions in Waves, 178 (1995) pp.179-191 1) Kashiwagi, M. Full-nonlinear simulation of hydrodynamic forces on a 7

Heaving two-dimensional body, 18 (1996)pp.373-381 13) Tanizawa, K.Long time fully nonlinear simulation of floating body motions with artificial damping zone, 18 (1996), pp.311-319 14) Tanizawa, K. and Clement, A : The report of NWT workshop, Proc. 1th ISOPE Conf., vol.3, Seattle, (), pp.175-184 15) U S. Estimation of wave drift force by numerical wave tank, Proc. 9th ISOPE Conf., vol.3, Brest, (1999),pp.33-33 18) Tanizawa, K., Minami, M. and Naito, S. Estimation of wave drift force by numerical wave tank, nd Report, Proc. B F L F Y Fig..1.3-1 Coordinate system vol.48 (1976)pp.3-4 16) 7 (1998),pp.181-184 17) Tanizawa, K., Minami, M. and Naito, 1th ISOPE Conf., vol.3, Seattle, (), pp.37-44 19) 187 (), pp.67-75.1.3 (1) X Y N X Y N X' =, Y' = N' = (1) 1 1 1 ρldu ρldu ρl du U C D 1.17 3 1) U ) L N () Fig..1.3-1 Shape Shape C D Table.1.3-1 Drag coefficients of various shapes of -dimensional bodies. 1. 1.16 1.6 1.55 1.55..3. 1.98.5 Table.1.3- Drag coefficients of various shapes of 3-dimensional bodies..47.38.4.59.8.5 1.17 1.4 1.38 1.17 1.5 F F X F D 8

1.3-1 F Fig.. C = D D 1 ρldu,c L = F L 1 ρldu FD FL (-1) () C N = 1 N ρl du = N ' () U Fig..1.3- The change of viscous drag of the -D rectangle cylinder with different B shape of the tip by L/B. L Fig..1.3-3 Drag coefficient of the -D rectangle object. Fig..1.3-4 Lift coefficient of the -D rectangle object. Fig..1.3-6 Longitudinal drag coefficient of the -D rectangle object. Fig..1.3-5 Moment coefficient of the -D rectangle object. Fig..1.3-7 Lateral drag coefficient of the -D rectangle object. 9

-1-1 Table.1.3-1.1.3-3 3 5 Table.1.3-1 Table.1.3-3 -1- L/B Fig..1.3-L/B Fig..1.3-8 Effect of the rounding corner on the drag coefficient. 3) L/B.6 Fig..1.3- Table.1.3-1 6) Fig..1.3-35 CD CL CN Fig..1.3-9 Effect of the rounding corner 4) on the drag coefficient of -dimensional L/B /. / Fig..1.3-35 CLCD X Y N Fig..1.3-34X Y Fig..1.3-67 N CN -1-3 rectangle object. Fig..1.3-1 Drag coefficient of -D elliptic cylinder. 3

Fig..3.1-11 Fig..1.3-5 Fig..1.3-8 Fig..3.1-9 1 KRR/BR:B B/D Fig..1.3.-11 K3D.5 3 Fig..1.3-1 Fig..1.3-1 3 K -1-43 K3D Fig..3.1-11 B/ K3D.5 3 Fig..1.3-11 Three-dimensional effect (change of the drag coefficient by the draft). Fig..1.3-1 Effect of the fracture surface. Fig..1.3-13 Interaction effects. 31

-1-5 (Table.1.3-1,) 3 (Fig..1.3-11) (Fig..1.3-13) Fig.1.3-14 Fig..1.3-13 towing direction 1..8 L/B=., B/d=1. Boxbarge L B.6 d Y'.4.. -. V=.m/s V=.3m/s V=.4m/s Estimated 3 6 9 1 15 18 β( deg.) (deg.) B Fig..1.3-14 Model and outline of the experiment. Table.1.3-3 Disabled Ship in drifting condition. L(m) B(m) d L/B Model A 3.87 1.936.6. Fig..1.3-15 Comparison of measured value of Y' and estimate of the Boxbarge. Model B 3..5.75 1..4. L/B=., B/d=1. Boxbarge V=.m/s V=.3m/s V=.4m/s Estimated.1.5 L/B=., B/d=1. Boxbarge V=.m/s V=.3m/s V=.4m/s Estimated X' N'. -. -.5 -.4 3 6 9 1 15 18 (deg.) β(deg.) Fig..1.3-16 Comparison of measured value of X' and estimate of the Boxbarge. -.1 3 6 9 1 15 18 (deg.) β(deg.) Fig..1.3-17 Comparison of measured value of N' and estimate of the Boxbarge. 3

N F X Fig..1.3-18 Model and setup of the experiment. F Y Hull Fig..1.3- Coordinate system. Fig..1.3- Coordinate system..58 Table.1.3-3..3.4m/sec 3 Table.1.3-5 Experimental conditions (deg.) 6 6 Fig.1.3-14 (deg.) 6, 3, 4, 6, 1,, 3, 6, 9, (deg.) 1, 15, 18 U(m/sec).6 Table.1.3-3..3.4m/sec 3 l Fig.1.3-14 Table.1.3-3..3.14 Fig..1.3-19 Deckhouse model..4m/sec 3 l Fig..1.3-1 Axial distribution of local drag Model AL/B=. Fig..1.3-15.3 Table.1.3-4 Principal dimensions of the model L(m) 1.8 B(m).3 d(m).16 coefficient of the 3- dimensional cylinder. 17 l 33

l Fig..1.3- Estimated Distribution of local l drag coefficient along the length. estimated CDX of the model ship with Model BL/B=1. deckhouse. Table.1.3-4 Fig..1.3-18 3 Fig..1.3-4 Comparison between measured and estimated CDY of the model ship with Table.1.3-5 3 1/1 1.8m.3m.m Fig..1.3-19 (.58m(L).3m(B).144m(H)) Fig..1.3- Fig..1.3-5 Comparison between measured o-xyz and estimated CN of the model ship Fig..1.3-3 Comparison between measured and deckhouse. with deckhouse. 34

- 3 7) 7) 3 Fig..1.3.-1 1 Fig..1.3-6 Change by draft and drift angle Fig..1.3-1 of the moment lever Lateral force coefficient Fig..1.3-1 Table.1.3-1 Moment Fig..1.3-89 lever Fig..1.3- Fig..1.3-7Method for estimating CN from Lateral force coefficient and Moment lever. 3 Fig..1.3-3 5 C DX C DY =9 C N L Table.1.3-6 Principal particulars of the model ship. VLCC L(m) 3. B(m).544 d(m).181 C B.83 l 35

Fig..1.3-5 C N 3 Fig..1.3-8Method for estimating CN from lateral force coefficient and moment lever. Trim Heel Fig..1.3-9 Estimated result of the change of X' Fig..1.3-3 Estimated result of the change by the draft of VLCC. of Y' by the draft of VLCC.. Fig..1.3-31 Estimated result of the change of N' by the draft of VLCC. Fig..1.3-3Comparison of estimated result of the change of N' by the draft and measured value 36

3-1 X Y 3 N N Fig..1.3-6 8),9) N Fig..1.3-6 B/d=3.6 Fig..1.3-6 N Fig..1.3-8 N N Fig..1.3-6 Photo.1.3-.1 Experimental model that divided VLCC. Fig..1.3-7 aft Y Fig..1.3-6 N Fig..1.3-7 Y VLCC SR1C 1 Table.1.3-6 YN fore model A model B model C model D model E model F model G model H remained part Fig..1.3-33 Division condition of the model.. Fig..1.3-34 Change of Y by breakage. 37

N Fig..1.3-6 Fig..1.3-931 Table.1.3-6 VLCC X Y N=45135 Fig..1.3-35 Effect of gap of the division model.. 5315deg. Y N Y Fig..1. 3-3 N Fig..1.3-9 31 VLCC 3- Table.1.3-6 F Y VLCC 1kgf XY L/B3 d/b/l N Photo.1.3-1 Fig..1.3-33 Fig..1.3-34 Fig..1.3-33 8 Model AH 9 F X kgf 3 Fig..1.3-36 Rate of change of Y' by the breakage. Y Y 38

Fig..3.1-37 Comparison between measured and estimated value of Y' of the breakage ship. Fig..1.3-38 Comparison between measured and estimated value of N' of the breakage ship. Y Fig. 39

.1.3-35 YYFig..1.3-35 Fig..1.3-36 =18 Y LL PP Y YK BRK Y L/LPP Y L/LPP=.5 Y 3 N 3 l L' Fig..1.3-36 =18 N = Y 3 Fig..1.3-37 Model-ACEG Fig..1.3-39 Change of the estimate of N by the breakage. Y Fig..1.3-6 L Y Fig..1.3-36 N Fig. N.1.3-39 ' '( L ) L YFig..1.3-37 Y l / L Fig..1.3-38 N Trim= deg. Trim=3 deg. Trim=6 deg. Fig..1.3-4 Experimental condition on evaluation of the trim effect. Fig..1.3-41 Change by Y' by Trim. 4

Heel deg. Heel 1deg. Heel deg. Fig..1.3-4Change of Y' by Heel. N N N 3-3 Y Fig..1.3-41 XN Fig..1.3-41 Fig..1.3-4 Trim=,3,6deg.3 Photo.1.3- Fig..1.3-33 Y Disabled Ship in drifting condition. Fig..1.3-43 Prediction result of the drift resistance of the disabled ship. 41

Heel =,1,deg.3 Fig..1.3-33 Fig..1.3-4 by the Author, Chapter 3,8 (1965). Y 4) Y No.38(1989), pp.61. XN 5) (1985),pp.73-74. 6) 1 No.37(1989)pp.49-83. 7) 4 8) Photo.1.3-1 Heel 3deg..1.1 4-1 Table.1.1-5 9) Fig..1.3-43 198. Y 18deg. 1995. 3 (3), pp.53-58. 3) Horner, S. F.: Fluid Dynamic Drag, Published 38 313 (197) pp.59-67. 1983. 1) (5).1.4 (1) 9 1) 99 (), pp.83-9. ) 4

f Fig..1.4-1 Concept of binocular stereo vision. xp = dxl(xlxr) yp = dyl(xlxr) = dyr(xlxr) zp = df (xlxr) () f d xl xr 3 (xp,yp,zp) yl yr y ( ) (-1) 3 Fig..1.4-1 ( ) d (VGA 64 (,,) 48 [pixel]) ( xp,yp,zp) PL(xL,yL)PR( xr, yr) 43

(Toyo corporationhttp://www.toyo.co.jp/) Fig. Fig..1.4-3D 3D Modeling using echosounding Photo.1.4-1 Example of multibeam echosounder. (-) Fig..1.4-3 Concept of shape measurement system 3 for floating object. Fig..1.4- Photo.1.4-1 Table.1.4-1 3 Table.1.4-1 Outline of function on multibeam echosounder system. Multibeam Echosounder (RESON SEABAT 815) ultrasonic wave swath breadth of sonic beam beam width of sonic beam.5 455 khz 1 resolution 6 mm measuring frequency (MAX) weight in water 4 Hz 5 kg graphic display real time ship speed for observation (MAX) 1 kt. z m 3 y x (3) 44

No. 3 video camera target model laser rangefinder No. video camera No. 1 video camera f Photo.1.4- Outline of trinocular vision system Fig..1.4-4 Concept of trinocular stereo vision. for 3D measurement. ( ) Fig..1.4-3 GPS Fig..1.4-5 3D modeling of floating model using trinocular vision system. 3 Photo.1.4-3 3 3 Fig..1.4-4 3 (4) TV VGA (64*48 pixel) 45

3ch. Photo.1.4-3 (A) 3 1.1-5 (A1).9 +1 (A) Photo.1.4-3 Fig..1.4-5 VGA % 3 (5) Table.1.4-Matching result using template matching processing. position enlargement inclined angle X,Y [Pixel] rate [deg] 1. -.5 A 371. 9 (-1.) (.) 1.1-5.6 A1 696. 85 (-1.1) ( -5. ).88 1.1 A 11. 7 (-.9) ( +1. ) () Photo.1.4-3 Table.1.4- Photo.1.4-3 Example of template matching processing. 46

A B 9 9 x 8 3 4 3 3 Fig...1-1 Dimension of towing bracket x BASE PLATE Rivet 33 19mm / 9 mm [ 6t mm] tf 6mm 19mm 9mm Fig...1-1 Fig...1-1 y 38 44 No.3 T-75 1 BASE Rive t BRACKET 16 Fig...1-45 Shackle: SB34 1 SHELL PLATE 8 8 45 z 1 5 5 1 Arrangement of rivet 45 6 Fig...1.3 Strength of bracket for tow 3 47

5tf broken bracket Fig...1-3 456 19mm 9mm appearance of mother plate cut rivets Photo..1-1 Broken appearance_1 Photo..1-1 9mm Fig...1-6 x =, Photo..1-9mm 5 Fig...1- Photo..1-1 Photo..1-14.7tf Photo..1- Broken appearance_ 48

1tf 5tf Fig...1-3 14.7tf 1 tf Fig...1-4 Schematic idea of catch of drift ship by two boats Fig...1-4 Drift ( ) Fig...1-5 Fig...1-5 Fig...1-5 Catch of drift ship 49

a L =.5m b T LBd=.5m.45m.15m (L=.5m)1.6 (== =) Fig...1-6 Towed ship and towline 8.m Table..1-1 Parameter of experiment 1cm 4m 4.m 4.m =156m /L=.6 3.m 3 kt wave generator deg. 3 deg Fig...1-6 = /L Table..1.1 ab Fig...1-.7 ab T pier T ab ab Table..1- Table..1- Swing angle() and ship status angle() 3 carriage(x-axis) wave absorber 7m Fig...1.7 Experimental arrangement in the basin Fig...1-8 Ship status during tow LH=4.m carriage(y-axis) 4 m 5

4m kt Fig...1-8 (L) /L T Fig...1-9 Fig...1-1 /L 1 ab /L.5 Fig...1.9 Measurement of swing angle and towline force /L.5 3 4 3 /L.5 /L Fig...-1 m 3 4m /L /L1 /L.5 /L.1.9 :tow point for emergency Fig...1-11 Arrangement of towing points for emergency tow Fig...1-1 Swing and ship status during tow Fig...1-1 Idea of emergency tow point 51

Fig...1-13 IWRC 6WS(36).4 Fig...1-11 3tf 6m 1m 3tf 4m.kg Fig...1-1 A B 1) Fig...1- Base Plate ) 1 3) 4) D/d Fig...1-14 a) Shackle Wire Rope 4m Ring m D= Fig...1-13 Parts of ship capture net 8m Fig...1-14 Example of ship capture net mm Table..1-3 Photo..1-3 D/d D/d Table..1-4 Photo..1.4.5tf mm b) mm Table..1-5 5

Table..1-3 Rope specimen Table..1-4 Test item and method Specimen Specimen Specimen Edge Specimen D/d=5 Specimen D/d=1 (a) For tensile test D/d=1 Photo..1-3 Rope specimen Specimen Edge D/d=1 (b) For axial friction test Photo..1.4 Appearance of metal fittings 53

Table..1-5 Result for static tensile test Fig...1-15 Load and elongation curve Photo..1-5 D/d tensile test (specimen ) Photo..1-6 D/d tensile test (specimen ) Photo..1-7 D/d tensile test (specimen ) Fig...1-16 Edge and D/d tensile test Table..1-6 Edge result and D/d tensile test result Fig...1-15.6tf 4.3 5.3tf 3 9.9tf 3 Photo..1-8 D/d tensile test (specimen ) / Photo..1-9 D/d tensile test Table..1-6 Fig...1-16 (specimen ) 54

Specimen D/d=1 Specimen Edge Specimen D/d=1 Specimen Edge Specimen D/d=1 Specimen Edge Specimen D/d=1 Specimen Edge Specimen D/d=1 Specimen Edge Specimen D/d=1 Specimen Edge Photo..1-1 Axial friction test 55

D/d151 /1 /5 1 PET D/d Photo..1-5 D/d Photo..1-69 Table..1-7 Photo..1-1 1 9 D/d Table..1-8 D/d Photo..1-1 1 Table..1-7 Result of axial friction test (D/d) Table..1-8 Result of axial friction test (edge) PLH-A(5,59 ) PL-C(993 ) 75mm4m 46.5tf PLH-A PLH-A PHL-A PL-C PL-C Photo...1-11 Appearance of breakage parts of towline 56

PL-C Photo..1-13 No.331 No.3637 PL-C PLH-A PLH-A PL-C PLH-A Fig...1-17 PL-C Fig...1-18 Photo..1-11 No.16 No.18 No.1 Photo..1-1 No.11416 No.181 No. No.1 No.14 PLHA Photo...1-1 Appearance of breakage parts of towline at first tow operation No.31 No.3 Fig...1-15 Arrangement of towline on PLH-A No.36 No.37 Photo...1-13 Appearance of breakage parts of towline at second tow operation No.43 No.44 Fig...1-16 Arrangement of towline on PL-C Photo...1-14 Appearance of breakage parts of breaking test 57

Photo..1-14 No.4344 Photo..1-19 No.5,6 No.4,41 c) Photo..1-15 No.1516 No.19 Photo..1-16 No.3133 No.37 39 Photo..1-17 No.34 No.19 No. Photo...1-15 Details of breakage parts of towline at first tow operation d) No.31 Photo..1-15 No.15,19, Photo..1-16 No.31,33,37,39Photo..1-17 No.3,4 Photo..1-18 No.45,47 e) ( ) No.15 No.31 No.37 No.4 No.16 No.33 No.39 Photo...1-16 Appearance of breakage parts of towline at second tow operation No.3 Photo...1-17 Appearance of breakage parts of towline cut by knife No.5 No.6 No.45 No.47 Photo...1-18 Appearance of breakage parts of towline at first tow operation No.4 No.41 Photo...1-19 Appearance of towline at first and second tow operations 58

f) Table..1-9 Towline tension at break Table..1-9 g) Fig...1-15 5)678.5 JIS F7 =R/r (-4-4).5 67 1969 6 199 11 1 115 Table 9 Fig...1-19 h) Fig...1- PLH-A PL-C.5 (-4-3) (3) 1) 1m ) 59

3) 4) 5) 6) 1) (197) ) (1998) 3) Kite Towing System 34 3 (1995) 5) 1967 Fig...1-19 Number of towed ships by gross tonnage Fig...1- Towing sea area 1) () pp.19-113 9 4 (1984) pp.43-411 4) 13) 1 5 6) GUIDELINESSecond Edition (1997) 1995 7)... 1988 8) (1993) pp.5-8 14) OCIMF MOORING EQUIPMENT (1) 9) 1) 15 (3) pp.319-3 11) (1-1) Fig...-1 14 1.8m.3m.m.16m 1/1 () pp.319-3 6

(Table..-1) 5 4 3 (.58m.3m.144m) 1 ( 1.78m) 98 14 98 33 447 3 447 33 47 58 Fig...-1 Schematic idea of model ship. Table..-1 Principal dimension of the ( 6.16g/cm) (LED) 3 PSD LED kt4kt 6kt (Fn =.45,.49,.735)(PSD) 8kt(Fn=.98) 4m (1-).5~. (1--1) Fig...- Table..- Cd (4.97 ) (.7 ) Cd = T /( ρbdv / ) (T ρ B 3 ( V ) 15m 7.5m3.5m) ( ) T 3 144 15 model ship. length 1.8m breadth.3m draught.16m depth.m KG.135m GM.48m 45 1 3 61

Cd 1) Table..-3 Table..-4 Table..-3 Fig...-4 Cd Table..-4 (Table..-4 )Cd 16% (Table..-4 ~) (Table..-4 ~) (Table..-4 ~) (Table..-3 ) Cd 6% Cd Table..- Experimental condition. Fig...-3 (,4,6,8kt) Table..-3.4~.6 (Table..-3 ~) (Table..-3 Fig...- Towing conditions in stern tow. ) kt~4kt 3 (Table..-4 ) 6

( ) Table..-4 ~ 3 6kt Fig...-5 Table..-3 Towing resistance coefficient in bow tow. Table..-4 Towing resistance coefficient in stern tow. 63

( ) 3 Fig...-3 Comparison of towing resistance coefficient in bow tow Fig...-4 Comparison of towing resistance coefficient in stern tow 3.5 134 3 3 3.5 3.5 Fig...-5 Schematic idea of broken model ship Fig...-6 Comparison of non-dimensional yaw (1--) period against towing speed. kt 4kt 1/ 1/4 4kt kt 1/ 1/4 (Table..-4 )4kt 6kt )3) Fig...-6 ( / ) 64

) 4)5) (Table..-4 ) (Table..-4 ) Fig...-7~Fig...-1 6kt ( ) ( ) % ( ) Fig...-7 Fig...-8 4kt ( ) (Fig...-8)Fig...-9~Fig...-1 kt~6kt 4kt kt 4kt Fig...-1 Fig...-1 kt 4kt kt 6) (1--3) Fig...-13 (Table..- ) 8kt Fig...-14 (Table..- ) 6kt 5 ) 65

Fig...-15 (Table..-4 ) Fig...-14 (1) 6kt () (1--4) (3) Fig...-7 Yaw period (small trim). ( ) 6kt 3 Fig...-1 Yaw amplitude (large trim). Fig...-8 Yaw period (large trim). Fig...-11 Sway amplitude (small trim). Fig...-9 Yaw amplitude(small trim). Fig...-1 Sway amplitude (large trim). 66

(1-3) (1-3-1) 7) 1/1 1.8m.3m.m.16m 7) (Fig...-1) ) 5 4 3) 3 Fig...-13 Comparison of towline tension in different towing speed. Fig...-14 Comparison of towline tension in different towing direction Fig...-15 Comparison of towline tension on damaged condition. (.58m.3m.144m) Fig...-5 3 1 ( 1.78m) ( 6.16g/cm) Table..-5 6kt( ) 7.8kt (.115m.11m) 4.9 ( ) ( ).8 / 67

1..8 ) 7) Z/a.5 3 ( 15m 7.5m3.5m) ( 5m8m 4.5m) ( 1 ).5 LED 3 PSD (1-3-) (1-3-3).5 1 1.5.5 3 /L Fig...-16 Response Amplitude.5 1 1.5.5 3 /L ( ) Fig...-18 Response Fig...-19 Amplitude Operator of surge. 1.5 /ka Exp. kt Exp..6kt Exp. 5.kt Exp. 7.8kt Cal. kt 1.8 Exp. kt 1.6 Exp..6kt.6kt 5.kt 1.4 Exp. 5.kt PSD 1. Exp. 7.8kt 1 Cal. kt.8 7.8kt.6 3.4..5 1 1.5.5 3 Fig...-16~Fig...-18 /L Fig...-17 Response.8 Amplitude Operator of pitch. X/a 1.9.8.7.6.5.4.3..1 Exp. kt Exp..6kt Exp. 5.kt Exp. 7.8kt Cal. kt Table..-5 Experimental condition. Operator of heave. 68

4 Fig...- yaw period Fig...-19 Yawng period duringi unstable motion in head waves. (4kt ) Fig...-1 Fig...- T Ψ (sec) 16 14 1 1 8 6 head waves kt(reg) 4kt 6kt kt in still water(exp.) 4kt in still water(exp.) 6kt in still water(exp.).6kt(irreg. 5.kt 7.8kt.6kt in still water(exp.) 5.kt in still water(exp.) 7.8kt in still water(exp.)..5 1. 1.5..5 λ/l 7) Fig...- Yawng amplitude duringi unstable motion in head waves. Fig...-3.6kt 5.9.6kt 5.kt(.63) (1-3-4) / 4) 5) Fig...-4 1 69

Fig...-5 Fig...-6 ( 3 4.9 ) ( )4 3 Fig...-1 Yawing period during unstable motion in following waves. Fig...- Yawing amplitude during unstable motion in following waves Fig...-4 Towline tension in still water (bow tow, bow trim, immersed and capsized condition). Fig...-5 Towline tension in still water (stern tow, bow trim, immersed and capsized condition). Fig...-3Non-dimensionalyawing period during unstablemotion in following waves Fig...-6 owline tension of broken ship in still water (stern tow, even keel, off-center tow). 7

8) Newman 9) 3 1) (Fig...-7 Fig...-8) Taw ρgb ha /L ρ g ha B L Fig...-7 λ/l=1.1 Fig...-8 7) 7).8 Fig...-9 Fig...-8 (Fig...-3) λ/l=1.5 7) (Fig...-31) Fig...-3 4% 7) λ/l=1. Fig...-33 5~6 4~5 (1-3-5) ( ) (1) 71

T aw /(rgb Ha /L) 15 1 5 stern tow, stern trim, upright kt 4kt 6kt Cal. kt T aw /(rgb Ha /L) 5 4 3 1 bow tow, stern trim, capsize kt kt 4kt 6kt Cal. kt..5 1. 1.5..5 3. /L Fig...-7 Towline tension increase in waves (stern tow, stern trim, upright)..5 1 1.5.5 3 3.5 /L Fig...-3 Towline tension increase in waves (bow tow, stern trim, capsize). T aw /(rgb Ha /L) 15 1 5 stern tow, stern trim, capsize kt 4kt 6kt Cal. kt T aw /(rgb Ha /L) 15 1 5 bow tow, bow trim, capsize kt kt 4kt 6kt Cal. kt.5 1 1.5 /L.5 3 Fig...-8Towline tension increase in waves (stern tow, stern trim, capsize)..5 1 1.5 /L.5 3 Fig...-31 Towline tension increase in waves (bow tow, bow trim, capsize). T aw /(rgb Ha /L) stern tow, stern trim, capsize (trim =.8deg) 15 1 5 kt kt 4kt 6kt Cal. kt T aw /(rgb Ha /L) 15 1 5 stern tow, bow trim, capsize kt kt 4kt 6kt Cal. kt..5 1. 1.5 /L..5 3. Fig...-9 Towline tension increase in waves (stern tow, stern trim, capsize, small trim)..5 1 1.5.5 3 /L Fig...-3 Towline tension increase in waves (stern tow, bow trim, capsize). () (4) (3) 7 ()

KGPS( GPS) PM-D KGPS PL-B 1 1 (-1) PL (PL-B) PM PM-D 3km 1 1 13 ~14 Fig...-34 KGPS 1 14 1 5 Table..-7 PL-B PM-D ( )( ~) PM-D PL-B ( )PL-B PL-B ( PM-D ) Fig...-33 Comparison of towline tension on damaged condition ( ) PL-B ( ) JISF333 3 5mm (Photo..-1) Table..-6 (Photo..-) PL-B 1 ( MS75) KGPS 1 (47) PL-B PL-B 1.57m PM-D 1 PL-B Table..-6 Main dimension of tow and towed ship. 65mm165m (.15kg/m) (-) 73

Table..-7 Experimental conditions at sea. Exp. No. time speed(kt) Patrol Vessel 'PL-B' 14155-8 straight 1Hz KGPS 1Hz KGPS XY( ) H( ) 15 1311 6 course change 13151333 7 right turn 13361348 7 left turn 14143,4,6 straight 1441448 straight 15161544 3-5 straight Patrol Vessel 'PM-D' straight follow rudder angle(deg) tow ship PL-B PL-B straight 7 PL-B straight 7 PL-B straight PM-D turn 7 PM-D turn 7,15,3 PM-D (-3) ~4m/sec Fig...-35 Fig...-36 KGPS PL-B PM-D 11.64m 5.m PL-B 1.6cm.1% PM-D 19.6cm.4% KGPS (Table..-7 ) Fig...-37 KGPS PL-B PM-D Photo..-1 Tension meter installed at bow. Photo..- Tension meter installed PL-B at stern Fig...-38 PL-B.96 Fig...-37 9sec Fig...-39 74

A B Tb AB l1 A B lb = l la lc = hb ( hb + ) (3) w la lb da db A B d Ta Tb TA TB lc 1) la ha ( ha + d Ta ) w = (1) T wl a a a = sinh 1 () w Ta b = l 1 l c d a Tb w( l l = sinh 1 w T a a l ) c (4) T a = T b (5) a T = T + ( wl ) a A b T = T + ( wlb ) B (6) (7) k l tow ship towed ship MS75 GPS antenna MS75 MS75 tow ship MS75 towed ship towline OSMIV 47 Fig...-34 Measuring system using KGPS. Fig...-35 Changeof distance between two antennas in Patrol Vessel PL-B. Fig...-36 Change of distance between two antennas in Patrol Vessel PM-D. 75

Fig...-38 Time history of towline tension. ' Ta + ( wla ) l = l + k Fig...-37 Head angle of tow and towed ship. Tb = ( hb h')( hb h' ) (1) w Fig...-41 (8) PM-D ( ) h (1) 11.6tf (3) Ta la = ( ha h')( ha h' + ) w l lc b + = (11) l 1 = d a + d b (1) l1 TBdadb h Fig...-4 ( ) 3% k.35(tf/m) ha hb 4.89m 4.35m da db lc l1 353m lc h 1m 11) PL-B (9) 89sec T A Tb T B hb B l 1 la A ha Ta da Fig...-39 Schematic idea of towline figure during towing. 76

6kt Fig...-43 KGPS Fig...-41 KGPS Fig...-41 8sec 33m KGPS ~3% Fig...-4 (TB) PL-B Fig...-43 (db) Fig...-4 Numerical calculation of towline tension and figure. ( 3mm) 13)14).3(tf/m)1.5%.35(tf/m)9% Fig...-4 Comparison between towline tension and distance from towed point to sea surface. Fig...-41 Towline tension and distance between tow and towed ship. Fig...-43 Relation between towline tension and elongation. 77

PLH-A 9.357(tf/m) 3 5 1 1 PL-C PLH-A 65mm 15(g/m).96 E 5.3(kgf/mm ) (-4) KGPS ( T7~T1) (1) PL-C 3 15 PL-C 1 () 65mm 5.3(kgf/mm ) ( T6~T1) 75mmm (3) () 15), GPS,Gross tonnage (t) 993 5,59 Displacement (t) 1,5 5,317 ( T6) PL-C 3 PLH-A 7 ( 9 ), PLH-A PL-C PLH-A PL-C 3 7 ( 11) :.8kg/m 46.5tf) Table..-8 Principal dimension of tow and towed ship. Patrol Vessel PL-C Length over all (m) 91.47 13. Maximum breadth (m) 1.5 15.5 Depth (m) 5.5 8.8 Patrol Vessel PLH-A (3-1) (3-1-1) Table..-8 1 PL PL-C) 3 PL PLH-A) 34 44 139 36 5 (Fig...-44) 14 1 7 ~1 7~8 9 1 Table..-9 1 9 PL-C PLH-A (, T1~T4) PL-C Izu Pen. Sagami Bay Izu Island N34 44' E139 36' Tokyo Bay Boso Pen. Within this circle of 5 nautical mile radius Fig...-44 Experimental site. 78

/1/9 /1/1 (3-1-) PL-C PLH-A Table..-1 Table..-11 PL-C PLH-A 3, Table..-9 Experimental conditions (tow). 1, PL-C PL-C Table..-11 Measuring item and 3m measuring device at Patrol Vessel PLH-A ( ) date Exp. No. time speed (kt) T1 13:39-14:5 3kt T 14:5-14:6 3kt T3 15:3-15: 5kt T4 15:-15:44 5kt T5 9:4-9:5 3kt T6 9:5-1:1 3kt l T7 13:19-13:3 3kt T8 13:3-13:5 3kt T9 14:7-14:5 3kt T1 14:5-14:5 3kt JISF333 PLH-A Fig...-45 KGPS4 Patrol Vessel Patrol Vessel rudder angle PL-C PLH-A (deg) tow ship straight straight PL-C right turn follow 7 PL-C straight straight PL-C right turn follow 15 PL-C straight straight PL-C eft turn follow 15 PL-C straight straight PLH-A follow right turn 7 PLH-A straight straight PLH-A follow right turn 15 PLH-A Table..-1 Measuring item and measuring device at Patrol Vessel PL-C. measuring item wave height pitch roll sway acc. surge acc. heave acc. wave compensation measuring item tension roll pitch sway acc. surge acc. heave acc. Patrol Vessel PLH-A Moving base Master receiver GPS receiver (MS75) Slave No.1 GPS receiver (74Msi) RS-3C Signal distributor Data transmitter measuring device ultrasonic wave probe optical fiber gyro optical fiber gyro optical fiber gyro optical fiber gyro optical fiber gyro accelerometer measuring device tension meter vibrating structure gyro vibrating structure gyro 3 axis accelerometer 3 axis accelerometer 3 axis accelerometer Patrol Vessel PL-C Data receiver RS-3C Signal distributor Slave No. GPS receiver (74Msi) Slave No.3 GPS receiver (74Msi) Fig...-45 Moving KGPS system. 79

KGPS, PL-C 1 (MS.3%PLH-A.1% 75-1 74Msi-3 )PLH-A 1 GPS 3 PLH-A 1 DGPS Fig...-47 Fig...-48 3kt KGPS PL-C PLH-A 17.17m PLH-A PL-C 1.8m 1.64tf/m.353tf/m 4.6 1Hz KGPS 5Hz KGPS X Y( ) H( ) GPS 3 ~1 (3-) (3--1) ~18m/sec,1~m Fig...-46 T5~T6 18 PL-C PLH-A PLH-A 13tf 18.8tf 7 PLH-A KGPS PL-C 16) PLH-A, 5cm 15cm 8 distance between two ships (m) 6 PLH-A 54 head direction 48 (deg) 4 distance between two ships (m) 445 44 435 43 45 36 3 4 18 1 6 PL-A head direction (deg) PL-C distance between two ships (m) 8:59: 9:1 9: 9:3 9:4 9:5 1: 1:1 1: Time distance PL-C head direction (deg) towline tension (tf) towline tension (tf) 1:7 16 Towline snapped. 14 1 Fig...-46 Distance between PL-C and PL-A, head direction and towline tension. (tow ship : PL-C, towed ship : PL-A, stern tow) towline tension (tf) 5 4 tension 57 9:35 6 9:4 63 9:45 66 9:5 69 9:55 1: 7 Time Fig...-47 Time history of distancebetween two ships and towline tension (/1/1). 15 1 5 18 1 8 6 4

m 1 m k T KGPS 14% T6~T1 PL-C PL-C T5 T6 1% 1.64tf/m 3kt T 56. 1.66tf/m 49.8 1% (3-3) T1 PL-C KGPS (3--) (1) Fig...-49 4.6 towline tension (tf) 18 Fig...-39 16 14 A B AB l 1 1 A B 1 8 la lb 6 d a d b A B 4 Ta Tb 435 437 439 441 443 445 447 distance between two ships (m) TA TB ' l c h Fig...-48Relation between distance and towline tension. (9:45-9:5, /1/1) 4.353tf/m Fig...-48 % Fig...-47 1 1 49.8 T = π (13) 1 1 k + m1 m Table..-8 PL-C PLH-A [m],[tf] 35 3 5 15 1 5 lc db 38 39 4 41 4 43 44 45 l 1 [m] da T B *1 h'*1 Fig...-49Numerical calculation of towline tension and figure. 81

() 1) 16) 3 (1985)pp.87-15 ) 186 (1999) pp.145-156 99 ()pp.83-9 4) (1) 5 (1988)pp.86-89 5) (1) (1989)pp.14-143 6) 6 (1996) pp.135-151 7) 33 ()pp.71-78 8) Maruo,H.The Drift of a Body Floating on Waves, Journal of Ship Research, Vol.4, No.3, (196)pp.1-1 9) Newman,J.N. The Drift Force and Moment on Ships in Waves, Journal of Ship Research. Vol.11, No.1, (1967) pp.51-6 1) 31 3 (1994)pp.114-15 11) 1) ( 3 ) 44 1 (1998)pp.13-4 13) (1993)pp.5-8 14) Hyunkyoung Shin, Kenji Yamakawa, Shoichi Hara Laboratory Tests on Synthetic Fiber Ropes, OMAE94, (1994), pp.441-448 15) 37 ()pp.165-171 ()pp.319-3 3) 54 Table..3-1Principal dimensions 8

Fig...3-1 Self-propulsion. Fig...3- Horse power estimation. 1 t ( ) 1wT T aw =(T w T )/(ρgζ w B / L PP ) R aw =(R w R )/(ρgζ w B / L PP ) Q aw =(Q w Q )/(ρgζ w DB / L PP ) N aw =(N w N ) VD 3 /(gζ w B / L PP ) R,T,Q,N : in still water with tow load 83

Fig...3-3 Amplitude of heave, pitch & surge Fig...3-4 Example of self-propulsion test results. 84

Fig...3-5 Propulsive performance in irregular waves. Fig...3-6 Towing power in still water. Fig...3-8 Towing power in irregular waves. Fig...3-7 Towing power of PL-C in still water (495rpm). Table..3-Principal dimensions of Patrol Vessels. Fig...3-9 Towing power of PM-D in still water (38rpm). 85

(JA) (KT) Fig...3-1 Speed, pitch angle and towline tension in still water. Fig...3-11 Weather conditions. 86

Fig...3-1 Speed, Blade angle and Towline tension in waves. 87

PM-D PL-B PM-D PM-D..4. (1) 1997 1999 (Photo..4-1) 88

() Fig...4-1 o -xy (i=1) (i=) o i-x iy i Li U& ( m i + m xi ) U i U T ( m + m ) i + T Towed Point VC ( m m ) r sin( ψ + ψ ) yi xi ( m + m ) VC ( m m ) r cos( ψ + ψ ) xi + L U ( m + m ) i i i ( I zzi + i zzi ) r i + r& i = N i i yi yi i i i i yi Li U& i i i i U sin β & β cos β i U i + U i U i U& Li cos β i & β i sin β i i i xi i i U L i i i i i C r sin β = X C r cos β = Y X = X V Cψ C Y = Y H 1) i i (1) () l l : Length of Towline Fig...4- Definition of towline x o Photo..4-1 1 U Wind A o V A X', x H f Wrecked fore part of "ERIKA". Wave W l T' N', r' H Y', y H T' 1 N', r' H1 1 a o 1 U 1 1 X', x H1 1 Y', y H1 1 Ship1Tow Ship V C C Current ShipTowed Ship Fig...4-1 Coordinate y p ) (p)(s) X = X H T T Tow Point 1 1 Y = Y 1 H1 H1 N = N H1 + N + N H N = N + Y H + X P1( p, s) R1( p, s) + y ( X P1( p) X P1( s) ) + y ( X X ) R1( p, s) p R1( p) R1( s) A1 + Y p + N + X A + N A A + Y W1 + Y W + X A1 + N + X ' + N W W A1 + Y T1 + Y T + X W1 + X T + N T W1 + Y T1 + X T1 () AW T 1) Isherwood 1) y 89

X Y Wi Wi N Wi = C = C X YWi = C ( κ, λ / Li ) gha / d iu Wi i ( κ, λ / Li ) gha / d iu i ( κ, λ / L ) gh / d U NWi i a i C XWiC YWi C NWi X T = T cosε κ λ/li Y T = T sin ε h a f N T = T sin L i (3) T af l l Fig...4- l T l = T 1 ω sinh ω l T (4) T T = T ω l + (5) ω T ψ i r i k l l = l T ω l + k (6) T (4) (6) T 3 ω l ω l T + ( ) = k l l 4T (7) T, T T i, T i = 1 ρlid iu i X Ti X Ti X Ti X T1 N T1 N T1 = T cos = T sin 1 1 = T 1 ( ψ 1 ψ ε ) ( ψ ψ ε ) a L 1 1 sin ( ψ ψ ε ) ε 1 (8) ε 1 ε& = { U l a r 1U L 1 U 1 f L sin 1 r U sin ( ε + β ) ( ψ + ε ψ ) ( ψ + ε ψ + β ) cos U cos L U i i = ri Li 1 r 1 1 (9) ψ& (1) (1) (9) (1) Table..4-1 Principal particulars. Tow Ship Towed Ship (Wreckage) L (m) 83. 8. B (m) 1.5 58. d (m) 3.5 19.3 C B.58 A f (m ) 13. As (m ) 55. L OA (m) 87.15 Table..4- Location of tow and towed points. Posture of towed ship a (m) f (m) Upright 33. 56. Capsize 33. 48. Table..4-3 Calculation conditions. Wind North Wind, V A =15 (m/s) Wave H 1/3 =3 (m), T H 1/3 =9 (sec.) 9

Photo..4- (3) (3-1) Table..4-1 CPP 1 SR1 VLCC (SR1C ) 3) S.S.71/ X H Y H N H 1/17 5) Bodyplan Photo..4-6(deg.) Fig...4-3 S.S.8 S.S.71/ 4) (3-) General view of towed ship. (a) Tow ship F.P. 91/ L.W.L. (b) Towed ship (Wrecked fore part) Fig...4-3 Bodyplans of tow and towed ships. 9 81/ 8 71/ 6(deg.) 4),5) U 1 1(knot) (knot) 6(mm) 6(m) 15.8(kg/m) l 3.5% 6) a, f Table..4- ±(deg.) ( p, s) = K r 1 1 + K ( ψ 1 ψ m ) + K ( ψ ψ ε ) + K d l Upright Fig...4-6 δ 1 3 1 4 (11) ψ m d l K 1~K 4 Table..4-3 7) (3-3) Fig...4-4 Isherwood 1) C XA, C YA C NA ψ A Fig...4-5 X HY H N H Upright N H Upright 4 91

C XWi, C YWi U 1 (knot) C NWi 3 8) (deg.) U 1 (knot) 9) SurgeSwayYaw 3 β 1 Yaw Upright T 3(tonf) C YWC NW C XW 6(deg.) Upright (Fig...4-8(b),(d)) β 1 ψ W -(deg.) (3-4) U 1 1(knot) 6(tonf) (knot) 1(tonf) Fig...4-9 T ~9(deg.) 1(deg.) Fig...4-7(a)~(d) Fig...4-8(a) ~(d) (knot) 3(sec.) (a)(b) U 1 1(knot) (c)(d) U 1 1(knot) U 1 (knot) (deg.) 6(deg.) 1(knot) 6(sec.) Upright (deg.) Upright U1 1(knot) (deg.) (knot) U 1 (knot) 3(deg.) 4(deg.)5(deg.) 1 Upright 6(deg.) ψ -~(deg.) 4 T U 1 1(knot) ~(deg.) 1 3(deg.) T 1 T 9

1. C XA1, C YA1, C NA 1.8.4. -.4 Fig...4-4 : C XA1 -.8 : C YA1 : C NA1-1. -18-1 -6 6 1 18 Wind direction ψ Α (deg.) Wind force and moment coefficients acting : r' =. : r' =. : r' =.4.5. -.5 -.1 -.15 -. -.5 -.3 X' H Upright -.35 -.4-1 1 3 4 5 6 7 8 9 1 Drift angle β (deg.) X' H Capsize.5. -.5 -.1 -.15 -. -.5 -.3 -.35 -.4-1 1 3 4 5 6 7 8 9 1 Drift angle β (deg.).7.6.5.4.3..1. Y' H Upright -.1 -. -1 1 3 4 5 6 7 8 9 1 Drift angle β (deg.) Y' H Capsize.7.6.5.4.3..1. -.1 -. -1 1 3 4 5 6 7 8 9 1 Drift angle β (deg.).5.4.3..1. -.1 -. N' H Upright -.3 -.4-1 1 3 4 5 6 7 8 9 1 Drift angle β (deg.).16.1.8.4. -.4 -.8 -.1 -.16 N' H Capsize -. -1 1 3 4 5 6 7 8 9 1 Drift angle β (deg.) Fig...4-5 Hydrodynamic forces acting on towed ship (stern trim 6 deg.). : C XW1 (Cal.) : C YW1 (Cal.) : C NW1 (Cal.) : C XW (Exp.) : C YW (Exp.) : C NW (Exp.) C XW1, C YW1, C NW1.1.8.6.4.. -. -.4 -.6 -.8 -.1-18 -1-6 6 1 18 Encounter angle ψ W (deg.) 1.6 C XW, C YW, C NW 1..8.4. -.4 -.8-1. Upright -1.6-18 -1-6 6 1 18 Encounter angle ψ W (deg.) 1.6 C XW, C YW, C NW Capsize 1..8.4. -.4 -.8-1. -1.6-18 -1-6 6 1 18 Encounter angle ψ W (deg.) Fig...4-6 Wave drifting force and moment coefficients acting on tow and towed ships. 93

x / L 8 78 76 74 7 7 68 66 64 6 6 58 56 54 5 5 48 46 44 4 4 38 36 34 3 3 8 6 4 18 16 14 1 1 8 6 4 - -4-6 -8 Wind Wave Current t = 6 (sec.) t = (sec.) (a) U 1 = 1 (knot) ψ A,W = (deg.) 8 x / L 78 76 74 7 7 68 66 64 6 6 58 56 54 5 5 48 46 44 4 4 38 36 34 3 3 8 6 4 18 16 14 1 1 8 6 4 - -4-6 -8 Unstable Wind Wave Current t = (sec.) t = (sec.) -1-1 -1-1 - -1 1 3 4 5 6 - -1 1 3 4 5 6 - -1 1 3 4 5 6 - -1 1 3 4 5 6 y / L y / L y / L y / L (b) U 1 = 1 (knot) ψ A,W = 6 (deg.) 8 x / L 78 76 74 7 7 68 66 64 6 6 58 56 54 5 5 48 46 44 4 4 38 36 34 3 3 8 6 4 18 16 14 1 1 8 6 4 - -4-6 -8 t = 6 (sec.) Current t = (sec.) (c) U 1 = (knot) ψ A,W = (deg.) 8 x / L 78 76 74 7 7 68 66 64 6 6 58 56 54 5 5 48 46 44 4 4 38 36 34 3 3 8 6 4 18 16 14 1 1 8 6 4 - -4-6 -8 Unstable Wind Wave Current (d) U 1 = (knot) ψ A,W = 6 (deg.) 6 : β 1 : ψ 1 : β : ψ 1 β 1,, ψ 1, (deg.) (a) U 1 = 1 (knot), ψ A,W = (deg.) -6 1 3 4 5 6 4 Tension (tonf) (a) U 1 = 1 (knot), ψ A,W = (deg.) 3 1 1 3 4 5 6 1 β 1,, ψ 1, (deg.) (b) U 1 = 1 (knot), ψ A,W = 6 (deg.) 6-6 1 3 4 5 6 4 Tension (tonf) (b) U 1 = 1 (knot), ψ A,W = 6 (deg.) 3 1 1 3 4 5 6 1 β 1,, ψ 1, (deg.) (c) U 1 = (knot), ψ A,W = (deg.) 6-6 1 3 4 5 6 4 Tension (tonf) (c) U 1 = (knot), ψ A,W = (deg.) 3 1 1 3 4 5 6 1 β 1,, ψ 1, (deg.) (d) U 1 = (knot), ψ A,W = 6 (deg.) 6-6 1 3 4 5 6 Tension (tonf) 4 3 1 (d) U 1 = (knot), ψ A,W = 6 (deg.) 1 3 4 5 6 Time (sec.) Fig...4-7 Trajectories of tow and towed ships and time histories of towing motion (Upright) 94

x / L 8 78 76 74 7 7 68 66 64 6 6 58 56 54 5 5 48 46 44 4 4 38 36 34 3 3 8 6 4 18 16 14 1 1 8 6 4 - -4-6 -8 Wind Wave Current t = 6 (sec.) t = (sec.) -1-1 -1-1 - -1 1 3 4 5 6 - -1 1 3 4 5 6 - -1 1 3 4 5 6 - -1 1 3 4 5 6 y / L y / L y / L y / L (a) U 1 = 1 (knot) ψ A,W = (deg.) x / L 8 78 76 74 7 7 68 66 64 6 6 58 56 54 5 5 48 46 44 4 4 38 36 34 3 3 8 6 4 18 16 14 1 1 8 6 4 - -4-6 -8 Wind Wave Current t = 6 (sec.) t = (sec.) (b) U 1 = 1 (knot) ψ A,W = 6 (deg.) 8 x / L 78 76 74 7 7 68 66 64 6 6 58 56 54 5 5 48 46 44 4 4 38 36 34 3 3 8 6 4 18 16 14 1 1 8 6 4 - -4-6 -8 t = 6 (sec.) Current t = (sec.) (c) U 1 = (knot) ψ A,W = (deg.) 8 x / L 78 76 74 7 7 68 66 64 6 6 58 56 54 5 5 48 46 44 4 4 38 36 34 3 3 8 6 4 18 16 14 1 1 8 6 4 - -4-6 -8 t = 6 (sec.) Current t = (sec.) (d) U 1 = (knot) ψ A,W = 6 (deg.) 6 : β 1 : ψ 1 : β : ψ 1 β 1,, ψ 1, (deg.) (a) U 1 = 1 (knot), ψ A,W = (deg.) -6 1 3 4 5 6 4 Tension (tonf) (a) U 1 = 1 (knot), ψ A,W = (deg.) 3 1 1 3 4 5 6 1 β 1,, ψ 1, (deg.) (b) U 1 = 1 (knot), ψ A,W = 6 (deg.) 6-6 1 3 4 5 6 4 Tension (tonf) (b) U 1 = 1 (knot), ψ A,W = 6 (deg.) 3 1 1 3 4 5 6 1 β 1,, ψ 1, (deg.) (c) U 1 = (knot), ψ A,W = (deg.) 6-6 1 3 4 5 6 4 Tension (tonf) (c) U 1 = (knot), ψ A,W = (deg.) 3 1 1 3 4 5 6 1 β 1,, ψ 1, (deg.) (d) U 1 = (knot), ψ A,W = 6 (deg.) 6-6 1 3 4 5 6 Tension (tonf) 4 3 1 (d) U 1 = (knot), ψ A,W = 6 (deg.) 1 3 4 5 6 Time (sec.) Fig...4-8 Trajectories of tow and towed ships and time histories of towing motion (Capsize) 95

Wind and Wave Direction (deg.) 3 1 Current 4 (tonf) Wind and Wave Direction (deg.) 3 1 Current 4 (m) Wind and Wave Direction (deg.) 3 1 Current 5 (PS) 4 3 4 3 4 4 5 5 5 3 6 6 6 7 7 7 8 9 4 (tonf) Upright : 1 (knot) : (knot) 3 (a) Tension 1 1 8 9 4 (m) Upright : 1 (knot) : (knot) 3 1 (b) Unstable motion amp. 1 8 9 5 (PS) Upright : 1 (knot) : (knot) 4 3 (c) EHP 1 1 Wind and Wave Direction (deg.) 3 1 Current 4 (tonf) Wind and Wave Direction (deg.) 3 1 Current 4 (m) Wind and Wave Direction (deg.) 3 1 Current 5 (PS) 4 3 4 3 4 4 5 5 5 3 6 6 6 7 7 7 8 9 4 (tonf) Capsize : 1 (knot) : (knot) 3 (a) Tension 1 1 8 9 4 (m) Capsize : 1 (knot) : (knot) 3 1 (b) Unstable motion amp. 1 8 9 5 (PS) Capsize : 1 (knot) : (knot) 4 3 (c) EHP 1 1 Fig...4-9 Estimation of towing tension, amplitude of unstable motion and EHP 5~7(deg.) ψ 1 T T (4) T ~5(deg.) Fig...4-9 EHP ~3% T 96

Upright ~(deg.) 5~7(deg.) 1) Kijima, K., Katsuno, T., Nakiri, Y. and Furukawa, Y.On the Manoeu- vring Performance of a Ship with the Parameter of Loading Condition, 168 (199) pp.141-148 ) 163 (1988) pp.19-118 3) () 1 ( ) (1995) 4) 186 (1999)pp.145-156 5) 74 ()pp.39-314 6) (16 ) 7) 1 (1997) 8) 31 3 (1994) pp.19-39 9) 1 (1)pp.37-4 1) Isherwood R.M. Wind Resistance of Merchant Ships, The Royal Institution of Naval Architects, Vol.115, (197), pp.37-338 97

3. (1) ( ) () 3 Ve(kt) (A) (B) A/B Vw B A Ve =.485.68 (1) Vw (m/sec).68.485 ±15 Vc(kt) φ Vw sinϕ /.45 Vw Vc = () 45 Vs(kt) (3) (Vv).1.. ( ) 3 1/ 3 1/ 1.6 1.6 1 + = λ π H B dz e k g H C C B Lg V B kz D W V (3) L B CW CD g H 1/3 ( H 1/3 /1.6 ) λ k = π /λ 98

T λ = T g /π.1.. GM χ MKS (4) (3) (3) a) (3) b) C C W D C W (3) 3 C D Fig. 3-1Fig. 3- C W /C D χ λ/l 3 Fig. 3-1 15 Fig. 3- B L d λ/l C W /C D L kz kz e dz e dz 1 B d {1 kd = e } C W / B Ld kd (4) C D Fig. 3- χ Fig. 3-3~Fig. 3-5 C W /C D χ 3 B L B Ld C W /C D χ kd Fig. 3-1 (4) 99

1 kd {1 e } 1 kd kd (5) (4) kd Fig.3-6 Fig. 3-1 Value of C W /C D Fig. 3- Value of C W /C D (tanker 15DWT, full load). (observation ship, full load). λ / L λ / L λ / L Fig. 3-3 Value of C W /C D (Tanker 15DWT) (mean value with respect to wave encounter angle) λ / L Fig. 3-4 Value of C W /C (Cargo) D (mean value with respect to wave encounter angle) 1

λ / L {1-exp(-kd)} / kd 1. 1.8.6.4. λ / L 5 1 15 5 kd Fig. 3-5 Value of C W /C D (PCC) (mean value with respect to wave encounter angle) Fig. 3-6Plotting of equation (4) near kd=. Table 3-1 Ship for drift motion prediction. Fig. 3-7 Ship during drift. (5) (Vv) Vs Vc Ve Vv Table 3-1 Fig. 3-7 1 1 4 14 3 6 a) 1998151 53 14 b) Ve (1) A/B=1.3.68( ) 15 Vc ().45 45 Vv (3) L=95m d=5.4m c) (B=Ld ) Table 3-1: 135 1.4 6 5 3 6 5 3 11

1.8~13.8m/s.5~4.m ~4m 1.3m/s 3.3m Fig. 3-8 7~8 7.5 3 8 ( 1m ) 7.5 88m 1.8 Fig. 3-8 prediction curve of wave Table 3- drift course and weather condition. date time place ship inclination current direction current speed (kn) wind direction wind force wave swell drift direction and speed 5-14.7N 1/5 3-33.8 ENE 5 ENE-4 14-9.8E 5-14.5N 4- L3 5.3 ENE 6 ENE-4 14-9.E 5-13.4N 5-4.5 ENE 7 ENE-5 14-9.1 5-1.7N 6-73.7 ENE 6 ENE-4 14-5.9E 5-11.7N 7- L15 6 1.7 ENE 6 ENE-4 14-8.3E 5-1.3N 8- L15 ENE 7 ENE-4 14-7.1E 5-8.5N 9- L15 154 1.5 ENE 7 ENE-5 14-6.E 5-6.9N 1- L15 ENE 7 ENE-5 14-5.E 5-4N 11- L15 11.9 E 7 E-5 14-3.8E 5-3N 1- L15 135 1.4 E 6 E-5 ENE-3 15 1. 14-E 5-1.1N 13- L15 E 6 E-4 14-E 4-59.9N 14- L15 14-1.6E 15-4-58.8N 141.4E 4-58N 16- L15 14-1.6E NE-3 NE-3 NE-3 NE-3 NE-3 NE-3 NE-3 NE-3 ENE-3 ENE-3 1.kn 185. 31 1. 11. 5. 183. L15 ENE 6 E-3 ENE-3 7.6 E 5 E-3 ENE-3 1 1. 1

d) Fig. 3-9 5 5 135 1.4 1.3m/s + 5.5 + 5.1 3.3m 5 7.5 ++ + (6) North Latitude 4.95 Predictions Actual drifting path Ocean current + Wind drift components Ocean current + Wind drift + Wave drift components Wavedrift component Ocean current component 4.9 13.95 14 14.5 14.1 14.15 East Longitude Fig. 3-9result of drift course prediction. 1) pp331-366 ) Vol.19pp.151-16 3) Tanizawa, K. and Minami, M., : On the drifting speed of floating bodies in waves, Proc. 1 th ISOPE Conf. Vol.3, (), pp.391-398 4 13

4. (1) ( ) Table 4-1 ()(LBD) 1) 4.1. (Optimum Towing Support System: OTSS) 3) (Light Weight) DOS/V OS (L B D )/(LBD) Windows 14 768( 18 14 14 ) 64Mb ( 18Mb )CPU 4MHz HD 1 36 3.5Mb Visual Basic FORTRAN C++ Deck )deck 3) ViewPoint 1Kbyte 4) D-WEB D-WEB 14 LBD ) (Compartment) BD No (Basic Weight) (Local Weight) Weight () Table 4-1 Main particulars of type ships. 1) 4 1 5)

(3) ( ) 1) (4) ) (FSE:Free Surface Effect) (GG) 3) ( (6) ( ) 4) )(LBD) (VCG) 5) GZ (5) ) (Typeship) ( (7) ( ) The start of OTSS Calculation of hydrodynamic force and motion (If you only refer to past results or default, you don t need to calculate.) Animation Input style New Past results Default Go to main screen select select Go to main screen Input items Sea conditions Principal dimension of disabled ship Broken condition of disabled ship & calculation of center of gravity and GZ-curve Longitudinal strength Form of submerged part damage stability Specifications of towline and tow ship Steady drift calculation Maneuver simulation (If you only refer to past results or default, you don t need to calculate.) Save of input data and results End Drift speed Drift direction Towline tension Amplitude of unstable motion Effective horse power Trajectory of tow ship and towed ship Fig. 4-1 Flow of Optimum Towing Support System. 15

(8) (S.F.) S.F. (B.M.) 4.. 3 1) Fig. 4-1 ) (1) OTSS 3) (9) ( ) 3 (a) (1) 4-3) (b) (11) (Fig. 4-) () (Fig. Save Fig. 4- Display for the start. Fig. 4-3 Main menu display. 16

(c) ( )7 7 98 (3) (a) (b) ( PCC( ) ( ) (c) (Fig. 4-4) Upright Normal Upright Broken Capsize Normal Capsize Broken ( ) ( ) ( ) * Sumcalc.exe GZ ) ( ) Wtrmesh.txt 3 DTH (d) (Fig. 4-5) 1kt 1 Fig. 4-4 Input menu for ship status. Fig. 4-5 Input menu for tow ship and towline. 17

Fig. 4-6 Display for animation. Fig. 4-7 Display for drift prediction. Cut_Res: Reset: Motion_Ani: Fig. 4-8 Display for the results of towline tension and unstable motion. (4) ( ) (6) MS-DOS 6) MS-DOS (Fig. 4-6) (7) (Fig. 4-8) 1 18 Water Opac Low: Water Opac Res: Naked ON: Naked Off: Cut: (5) (Fig. 4-7) 5) 1

Fig. 4-9 Display for the results of trajectory of tow and towed ship. Engine room Broken position A.P.T. Slop tank 4.3. 4.3.1. Table 4-1 7 (1) () (3) (4) F.W.T. F.O.T. Fig. 4-11 1kt Fig. 4-1 (8) (Fig. 4-9) ( ) ( ) 1 ( XG q, YGq, ZGq ) ( d e, te, he ) e e C.O.T. B.W.T. F.P.T. Fig. 4-1 Tank arrangement of 15DWT. tanker. (1) Fig. 4-1 15 ( ) /3 t ( d e, te, he ) W q e h W q = e (1) t e XG q = ( KGq ZBe ) + Lpp q e q XB e e e () YG = tan( h )( KG ZB ) + YB (3) ( e e e XB, YB, ZB ) d e 19

Initial condition Damage 1 Damage Damage 3 GZ(m) Initial condition damage damage4 damage6 damage8 damage1 damage3 damage5 damage7 15 1 5 Damage 4 Damage 5 Damage 6 Damage 7 Damage 8 Damage 9 Fig. 4-11 Damage procedure of aft part of broken tanker. Initial condition Damage 1-1 -1-8 -6-4 - 4 6 8 1 1 14-5 -1-15 Heel(deg) Fig. 4-13 GZ curve of damaged full loaded condition. D raft, Trim, Heel 3 Draft (m) (ballast) Trim (deg) (ballast) Heel (deg) (ballast) Draft (m) (full) Trim (deg) (full) Heel (deg) (full) 5 15 1 Damage Damage 3 5-5 Damage 4 Damage 5 Damage 6-1 Initial Damage 1 Damage Damage 3 Damage 4 Damage Damage 6 Damage 7 Damage 8 condition 1 3 4 5 6 7 8 Fig. 4-14 Change of ship status on upright full loaded condition (1/3 aft part). Fig. 4-1 Damage procedure of fore part of 11 e = ρ P p V ϕ, d, t, h ) (4) w j j ( j e e e p jξ x ( ϕ j, de, te, he ) XBe = (5) p V ( ϕ, d, t, h ) j j j e e e e p jξ y ( ϕ j, de, te, he ) YBe = (6) p V ( ϕ, d, t, h ) p jξ z ( ϕ j, de, te, he ) ZBe = (7) p V ( ϕ, d, t, h ) j j e ρ : w P : p j : V ϕ, d, t, h ) ( j e e e ( de e e broken tanker. e e e e : ϕ j, t, h ) () Fig. 4-13 GZ -85 ~85 8 Fig. 4-14 ( ) Fig. 4-15 6 Fig. 4-16( ) ξ u ( ϕ j, de, te, he ) : ϕ j ( d,, ) u(xyz) e te he /3

Table 4- Drift motion (wind only). Ship Type Cargo Fishing boat PCC Tanker Solution No. drift speed (kt) drift direction (deg) head direction (deg) 1.88 174.4 71.1.9 18. 18. 3.88 185.6 88.9 4.8 186.4 7.1 1.91 171.5 81.6.16 18. 18. 3 1.75 18.. 4.91 188.5 78.4 1.13 18. 18. 1.76 18.1 36. 1.56 169. 8.4 1.45 18.. 3 1.7 18. 18. 4.56 189. 77.7 Table 4-3 Drift motion (wind and waves). Bending moment (MT-M) 1 9 8 7 6 5 4 3 1 Fig. 4-15 Definition of ship status. Bending moment Shear force Shear force (MT) 5 15 1-1 -15 - -5 1 3 4 5 6 7 8 9 1 From A.P. (m) Fig. 4-16 Shear force and bending moment on upright full loaded condition (1/3 aft part). Draft, Trim, Heel 4 3 1 Draft (m) (ballast) Trim (deg) (ballast) Heel (deg) (ballast) Draft (m) (full) Trim (deg) (full) Heel (deg) (full) 5-5 Ship Type Cargo Fishing boat PCC Tanker Solution No. drift speed (kt) drift direction (deg) head direction (deg) 1.58 17. 89.5 5.39 18. 18. 3 5.13 185. 5.9 4.58 188. 7.5 1 1.86 133.5 1.1 3.3 18. 18. 3.34 18.. 4 1.86 6.5 57.9 1 1.89 133.7 79.3 1.88 151. 9.7 3.57 177.6 358.5 4 3.18 183.1 183.5 1.3 114.8 87.5.9 18.. 3.3 43.3 7.5-1 - -3 Initial Damage 1 1 Damage Damage 3 3 Damage 4 4 condition Fig.4-17 Change of ship status on upright full loaded condition (/3 fore part). Fig. 4-17 (Fig. 4-18) 4.3.. 1m/sec m7sec PCC ( )4 Table 4- ~4 18 111

Tank15, wind only drift speed(kt).5. 1.5 3 1..5. 7 33 wave 3 period: 7.s height:.m incident angle: deg wind 6 speed: 1.m/s incident angle: deg 9 Tank15, wind and waves drift speed(kt) 3. 33.5. 1.5 3 1..5. 7 wave 3 period: 7.s height:.m incident angle: deg wind 6 speed: 1.m/s incident angle: deg 9 4 Cargo1, wind only drift speed(kt) 3..5. 1.5 3 1..5. 7 4 Fish, wind only drift speed(kt).5. 1.5 3 1..5. 7 4 PCC99, wind only drift speed(kt).5. 1.5 3 1..5. 7 1 drift 1 15 18 direction(deg) wave 33 3 period: 7.s height:.m incident angle: deg wind 6 speed: 1.m/s incident angle: deg 9 1 drift 1 15 direction(deg) 18 wave 33 3 period: 7.s height:.m incident angle: deg wind 6 speed: 1.m/s incident angle: deg 9 1 drift 1 15 direction(deg) 18 wave 33 3 period: 7.s height:.m incident angle: deg wind 6 speed: 1.m/s incident angle: deg 9 4 1 drift 1 15 18 direction(deg) Cargo1, wind and waves drift speed(kt) wave 6. 33 3 period: 7.s 5. height:.m 4. incident angle: deg 3. 3 wind 6. speed: 1.m/s 1. incident angle: deg. 7 9 4 1 drift 1 15 direction(deg) Fish,wind and waves 18 drift speed(kt) wave 3.5 33 3 period: 7.s 3. height:.m.5 incident angle: deg. 1.5 3 wind 6 1. speed: 1.m/s.5 incident angle: deg. 7 9 4 1 1 drift 15 direction(deg) 18 drift speed(kt) wave 3.5 33 3 period: 7.s 3. height:.m.5 incident angle: deg. 1.5 3 wind 6 1. speed: 1.m/s.5 incident angle: deg. 7 9 4 1 4 1 1 18 15 drift direction(deg) 1 18 15 drift direction(deg) Fig. 4-18 Drift motion prediction of various type of ships in wind and waves. 11

Table 4-4 Submerged part of type ship status. Stern trim 3 Bow trim 3 Barge Cargo Container Fishing boat PCC Tanker (Double hull) Tanker1 (Single hull) Table 4-5 Submerged part of tanker and cargo. 6trim 3trim Even keel -3trim -6trim Cargo Tanker(Double hull) Table 4-6 Submerged part of broken tanker. Aft part -6. trim LOA = 176.6m Fore part 6. trim LOA = 88.3m All Even keel LOA = 65.m 9 ( ) Table 4-6 () Table 4-1 PCC 1.5 X w X Table 4-3 w Fx = (5) 1 1.4~. ρglha ρ g L h a 4.3.3. (1) 8) Newman 9) 3 Table 4-1 7 ( ) ±3 ( + )3 ( ) ±3 ±6 5 ( ) ±6 Table 4-4 Table 4-5 113

1..9.8 1. 1..8.6.4.. surge.7.8.6.5 even keel 18deg.6 even keel 18deg.4 barge cargo.4.3 container fishing boat barge cargo. container fishing boat PCC tanker. PCC tanker.1 tanker1 tanker1...5 1 1.5.5 3 3.5.5 1 1.5.5 3 3.5 pitch?/l even keel 18deg.5 1 1.5.5 3 3.5?/L barge container PCC tanker1 cargo fishing boat tanker 1. 1...5 1 1.5.5 3 3.5 -.5 -.1 -.15 -. -.5 heave Fx?/L barge container PCC tanker1?/l cargo fishing boat tanker even keel 18deg Fig. 4-19 Effect of ship type on RAO of ship motion and wave drift force (even keel, head wave). 1. 1..9 surge.9 heave.8.8.7.7 even keel.6.6 even keel deg.5.5 deg.4.4 barge cargo barge cargo.3.3 container fishing boat container fishing boat.. PCC tanker PCC tanker.1.1 tanker1 tanker1...5 1 1.5.5 3 3.5.5 1 1.5.5 3 3.5?/L?/L 1. 1..8.6.4.. pitch even keel deg.5 1 1.5.5 3 3.5?/L barge container PCC tanker1 cargo fishing boat tanker.3.5..15.1.5. Fx barge container PCC tanker1 even keel deg.5 1 1.5.5 3 3.5?/L cargo fishing boat tanker Fig. 4- Effect of ship type on RAO of ship motion and wave drift force (even keel, follow wave). 114

1.8 1.6 1.4 1. 1..8.6.4.. 6. 5. 4. 3.. 1.. surge -3. trim 18deg.5 1 1.5.5 3 3.5 pitch barge container PCC tanker1 λ/l cargo fishing boat tanker barge container PCC tanker1 cargo fishing boat tanker -3. trim 18deg.5 1 1.5.5 3 3.5 λ/l. 1. 8 1. 6 1. 4 1. 1.. 8. 6. 4... -.5-1. -1.5 -. -.5-3. -3.5-4. heave barge container PCC tanker1 cargo fishing boat tanker -3. trim 18deg.5 1 1.5.5 3 3.5 λ/l.5 1 1.5.5 3 3.5 Fx barge container PCC tanker1 λ/l cargo fishing boat tanker -3. trim 18deg Fig. 4-1 Effect of ship type on RAO of ship motion and wave drift force (bow trim, head wave). 1.6 1.4 1. 1..8.6.4.. 6. 5. 4. 3.. 1.. surge barge cargo container fishing boat PCC tanker tanker1-3. trim deg.5 1 1.5.5 3 3.5 pitch barge container PCC tanker1 λ/l cargo fishing boat tanker -3. trim deg.5 1 1.5.5 3 3.5 λ/l 3.. 5. 1. 5 1.. 5.. 1.8 1.6 1.4 1. 1..8.6.4.. heave barge container PCC tanker1 cargo fishing boat tanker -3. trim deg.5 1 1.5.5 3 3.5 λ/l Fx barge cargo container fishing boat PCC tanker tanker1-3. trim deg.5 1 1.5.5 3 3.5 λ/l Fig. 4- Effect of ship type on RAO of ship motion and wave drift force (bow trim, follow wave). 115

4.5 4. 3.5 3..5. 1.5 1..5. 18 16 14 1 1 8 6 4 surge barge container PCC tanker1 cargo fishing boat tanker 3. trim 18deg.5 1 1.5.5 3 3.5 pitch barge container PCC tanker1 λ/l cargo fishing boat tanker 3. trim 18deg -1.6.5 1 1.5.5 3 3.5 λ/l 6. 5. 4. 3.. 1... -. -.4 -.6 -.8-1. -1. -1.4 heave barge container PCC tanker1 cargo fishing boat tanker 3. trim 18deg.5 1 1.5.5 3 3.5 λ/l.5 1 1.5.5 3 3.5 Fx barge container PCC tanker1 cargo fishing boat tanker λ/l 3. trim 18deg Fig. 4-3 Effect of ship type on RAO of ship motion and wave drift force (stern trim, head wave). 5. 4.5 surge 4.5 4. 4. barge cargo 3.5 barge cargo 3.5 container fishing boat container fishing boat 3. PCC tanker PCC tanker 3. tanker1.5 tanker1.5 3. trim 3. trim.. deg deg 1.5 1.5 1. 1..5.5...5 1 1.5.5 3 3.5.5 1 1.5.5 3 3.5 18 16 14 1 1 8 6 4 pitch barge container PCC tanker1 λ/l cargo fishing boat tanker 3. trim deg.5 1 1.5.5 3 3.5 λ/l 1.6 1.4 1. 1..8.6.4.. heave Fx barge container PCC tanker1 λ/l cargo fishing boat tanker 3. trim deg.5 1 1.5.5 3 3.5 λ/l Fig. 4-4 Effect of ship type on RAO of ship motion and wave drift force (stern trim, follow wave). 116

1.8 1.6 1.4 1. 1..8.6.4.. 6. 5. 4. 3.. 1.. surge 6 trim 3 trim even keel -3 trim -6 trim tanker 18deg.5 1 1.5.5 3 3.5 pitch 6 trim 3 trim even keel -3 trim -6 trim λ/l tanker 18deg -.9.5 1 1.5.5 3 3.5 λ/l 3..5. 1.5 1..5.. -.1 -. -.3 -.4 -.5 -.6 -.7 -.8 heave 6 trim 3 trim even keel -3 trim -6 trim tanker 18deg.5 1 1.5.5 3 3.5 λ/l.5 1 1.5.5 3 3.5 Fx λ/l tanker 18deg 6 trim 3 trim even keel -3 trim -6 trim Fig. 4-5 Effect of ship status on RAO of ship motion and wave drift force (Tanker(double hull)). 4.5 4. 3.5 3..5. 1.5 1..5. surge 6 trim 3 trim even keel -3 trim -6 trim cargo1 18deg.5 1 1.5.5 3 3.5 /L 18 16 14 1 1 8 6 4 pitch 6 trim 3 trim even keel -3 trim -6 trim cargo1 18deg.5 1 1.5.5 3 3.5 /L 8.. 7. 6. 5. 4. 3.. 1.. heave 6 trim 3 trim even keel -3 trim -6 trim cargo1 18deg.5 1 1.5.5 3 3.5 /L. -. -.4 -.6 -.8-1. -1. -1.4-1.6.5 1 1.5.5 3 3.5 Fx /L cargo1 18deg 6 trim 3 trim even keel -3 trim -6 trim Fig. 4-6 Effect of ship status on RAO of ship motion and wave drift force (Cargo). 117

1.4.5 1. 1..8 surge aft(-6. trim) fore(6. trim) all(even keel) 1.5 heave aft(-6. trim) fore(6. trim) all(even keel).6.4.. 1.9.8.7.6.5.4.3..1 Fig. 4-7 Effect of ship status of broken tanker on RAO of ship motion and wave drift force. 18 tanker broken 18deg.5 1 1.5.5 3 3.5.5 1 1.5.5 3 3.5 pitch Fig. 4-19 Fig. 4- Table 4- Fig. 4-3 Fig. 4-4 3 λ/l=.5 1 Fig. 4-1 Fig. λ/l tanker broken 18deg.5 1 1.5.5 3 3.5 λ/l aft(-6. trim) fore(6. trim) all(even keel) Table 4-7 Metacenter height and center of gravity. aft(-6. trim) fore(6. trim) all(even keel) GML 77.43 3.439 384.33 OGX 15.768-3.144 8.75 4- -3 ( 1.5. -.1 -. -.3 -.4 -.5 -.6 tanker broken 18deg ) Fig. 4-5 Fig. 4-6 ( 118 λ/l.5 1 1.5.5 3 3.5 Fx λ/l aft(-6. trim) fore(6. trim) all(even keel) tanker broken 18deg λ/l.5 ( )

) ( ) λ/l=1. 6 λ/l=1.5 Fig. 4-7 ( ) 1/3 3 6 Table 4-7 (GML) (OGX) 4.4. 1) Fig. 4-8 Towing operation concept using internet for making emergency towing database. ( -3kt 5-6kt () (3) (4) 1 (5) (6) 119

3) ( ) () pp.339-34 4) 3D-WEB 871 (3)pp.16-19 4.5 19 ()pp.13-111 6) 191 () pp.9-36 7) () pp.163-166 8) Maruo, H.The Drift of a Body Floating on 9) Newman, J.N. The Drift Force and Moment on Ships in Waves, Journal of Ship Research, Vol.11, No.1, (1967) pp.51-6 1) 31 3 (1994)pp.114-15 1 5 14 (Fig. 4-8) 1) ( ) 74 ()pp37-38 ) ( 1 )1 (1)pp.33-36 5) Waves, Journal of Ship Research, Vol.4, No.3, (196)pp.1-1 1

11

1) 11) 13

Fig.1 Wire rope construction 4) 1 6 Fig.1 point contact lay Fig. Point contact lay 4) Fig. Fig.3 Fig.3 Linear contact lay 4) (IWSC: Independent Wire Strand Core ) IWRC: Independent Wire Rope CoreCFRC: Center Fit Wire Rope Core Table 1 Classification of breaking load 4) (Fig.4) Fig.4 Section of core ropes 4) Table Symbol of lay 4) JIS 355 Table 1 Z S 14

Z S (Table ) ( ) 637 G/O IWRC 6 WS(36) G/O 637 37 6 G/O Table Z IWRC 6WS(36) 77 IWRC: Independent Wire Rope Core WSWorinton Seal 6 D/d=1 Fig. 5 Appearance of synthetic 637 IWRC 6 fiber ropes 5) WS(36) Table 3 Table 4 4 Fig.5 1) 3 ) 4Z S 4 4..1 (-4-1) 3) 1 6Z OCIMF S D/d>1 4 6 4) IWRC 6(37) D/d=16 6 WS(36)D/d= 1) 4) Table 5 Z S Z S Z 1 JIS 15