Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Similar documents
Hidetaka Okada Department of Cosmosciences, Graduate School of Science, Hokkaido University

Contents 1 Jeans (

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

LLG-R8.Nisus.pdf

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

総研大恒星進化概要.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Standard Model for Formation of the Solar System ADACHI Toshitaka Department of Earth Sciences, Undergraduate school of Science, Hokkaido University P

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

本文/目次(裏白)

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

Part () () Γ Part ,

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

プログラム

gr09.dvi

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS


Formation of hot jupiters by slingshot model Naoya Okazawa Department of Earth Sciences, Undergraduate school of Science, Hokkaido University

The Physics of Atmospheres CAPTER :

PDF

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =


A

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

nsg02-13/ky045059301600033210

( ) ,

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

untitled

I ( ) 2019

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

修士論文

untitled

構造と連続体の力学基礎

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq



I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Microsoft Word - 11問題表紙(選択).docx

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)


meiji_resume_1.PDF

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

A 99% MS-Free Presentation

untitled

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *


Untitled

pdf

: , 2.0, 3.0, 2.0, (%) ( 2.

i 18 2H 2 + O 2 2H 2 + ( ) 3K

/Volumes/NO NAME/gakujututosho/chap1.tex i

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

dynamics-solution2.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i


Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

all.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

201711grade1ouyou.pdf


arxiv: v1(astro-ph.co)

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

10:30 12:00 P.G. vs vs vs 2

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n


Transcription:

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada 22060172 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group : 2010 2 26

., 60.,,.,,.,,.,,..,., gas-starved accretion disk model) Canup and Ward 2006) A common mass scaling for satellite systems of gaseous planets,., Canup and Ward 2006). Canup and Ward 2006),,. Canup and Ward 2006)

i 1 1 1.1.................................. 1 1.2................................. 2 2 3 2.1............................ 3 2.2.............................. 4 2.3.............................. 6 2.4................ 7 2.5............................... 7 3 9 3.1............................ 9 3.2................................. 11 3.3........................ 14 3.4............................ 18 3.5........................ 21

ii 3.6............................... 22 3.7..................... 23 4 25 5 Canup and Ward 2006 26 5.1..................................... 26 5.2..................................... 26 5.3......................... 27 5.4.............................. 30 5.5............................ 32 5.6......................... 36 5.7................................. 38 40 41 1 Lubow et al., 1999).......... 5 2 Canup and Ward, 2002).......... 14

iii 3, Canup and Ward, 2002)....... 20 4.......................... 29 5....... 33 6............. 34 7......... 35

1 1 1 1.1,,,,,,.., Mosqueira and Estrada 2003),,.,,,. T 1/r.,,,,.,,.., Canup and Ward 2006), gas-starved accretion disk model)., ).,,,,,,..,,,

1 2. T T F 1/4 in, F in, ),,.,,..,, Canup and Ward 2006),. 1.2,,,, 2 ). Canup and Ward 2006) 3 ), 4 ). Canup and Ward 2006) 5 ).

2 3 2.,. Canup and Ward 2006),. Hayashi et al., 1985)., Canup and Ward 2006). 2.1.,.,. ),.,,.,,..., 10., Hayashi et al., 1985).,, H 2 O,..,,,.

2 4,.,.,,,. 2.2. Lubow et al. 1999) 2. 1.,.... 1,,..,.,.,,.,.,,.,,.,.

2 5 1 Lubow et al., 1999).,,..,,.

2 6 2.3,.,.,.,,,.,,,.,.,,.,,.,,.,,,,.,.,,.,,.,.,.,,..

2 7,. 2., Type I migration)., Type I migration,.,. Type I migration.,. 2.4,.,,,,.,,.. Canup and Ward 2006) M T M P M T /M P 10 4..,. 3.7 ).. 3.4 ),, T F 1/4 in Canup and Ward, 2002).,.,

2 8. 2.5 Canup and Ward 2006) N, )..,.,,.,.,,.

3 9 3,,, Canup and Ward 2006),. 3.1,., -, 3. 3, ρ v t ρ t + ρv) = 0, 1) + v )v = p, 2) p = ρk BT µm u. 3)., k B, µ, m u, v, ρ, p. v = vx, t),ρ = ρx, t), p = px, t)., v 0 = 0, ρ = ρ 0, p = p 0. v = v 1 x, t), ρ = ρ 1 x, t), p = p 1 x, t), v = v 0 + v 1, ρ = ρ 0 + ρ 1, p = p 0 + p 1. 1),2), t ρ 0 + ρ 1 ) + x ρ 1v 1 + ρ 0 v 1 ) = 0, 4) ρ 0 + ρ 1 ) v ) 1 t + v 1 v 1 = x x ρ 0 + ρ 1 ). 5) 2. ρ 0 / t = 0,, ρ 0 / x =

3 10 0., ρ 1 t + ρ v 1 0 x 6) 7) t, x, = 0, 6) ρ 0 v 1 t = p 1 x. 7) 2 ρ 1 t 2 + ρ 2 v 1 0 = 0, 8) t x ρ 0 2 v 1 x t = 2 p 1 x 2. 9) 2 ρ 1 t 2 = 2 p 1 x 2. 10). 10) 3),,, 11), 2 ρ 1 t 2 = k BT µm u 2 ρ 1 x 2. 11) ) 1/2 kb t c s =. 12) µm u 2 ρ t 2. c s. = c s 2 2 ρ x 2. 13). z, z. z, P z = GM Sunρ z r 2 r. 14), M Sun, G, ρ. P = ρk BT µm u, ρ z = GM Sunρ z r 2 r ρ ρ = GM Sun r 3 µm u k B T, 15) µm u z z. k B T 16)

3 11 z. z = 0 ρ = ρ0),, ρz) = ρ0) exp GM Sun µm u z 2 ) a 3. 17) k B T 2 H. 2k B T a H = 3 k B T τ K = µm u GM Sun 2µm u π. 18) τ K. 17) ) z 2 ρ = ρ0) exp. 19) H 2. z = H, ρ = ρ0) e 1/e.. 3.2,,,.., 10.,,,, 2007 ).. M c P, T, ρ.,. r F, r, r l., F σ SB [T 4 r) T 4 r + l)] 4σ SB T 3 dt l. 20) dr, σ SB., κ, ρ, l 1/κρ, 20). F 4σ SBT 3 κρ dt dr. 21)

3 12 F,,, 4/3,. F 16σ SBT 3 3κρ dt dr. 22),, 16σ SB T 3 dt 3κρ dr = L 4πr 2. 23), L r,.,, M c,. L GM cm c. 24) R c M c, R c,,, M atm., M r. dp dr = GM ρ, r2 25) P = ρk BT. µm u 26) R out,, T out, P out. M c M atm ). T T out, P P out, κ, 23), T = 26), ) 1/4 3κρL. 27) 64πσ SB r P = ρk ) 1/4 B 3κρL. 28) µm u 64πσ SB r

3 13 25), [ dp dr = d ) ] 1/4 ρk B 3κρL dr µm u 64πσ SB r = GM ρ. 29) r2, GMµmu ρ = k B ) 4 πσ SB 12κL. 30), M atm. M atm = 4πr 2 GMµmu ρdr = R c k B Rout ) 4 π 2 σ SB 3κL ln R out R c. 31) M atm M c, M M c. M M c )., 31) M M = M c + M atm. M c M atm, M atm, M atm., M c M atm, M c, M atm. M c.,,,., M = M atm + M c, dm atm /dm c =. 31) M = M atm + M c, 24) 31), GMatm + M c )µm u M atm = k B ρ c = M c / 4 3 πr c 3, ) 4 π 2 σ SB 3κ R c ln R out. 32) GM c M c R c ) M atm = M atm + M c ) 4 µmu π 2 ) 1/3 σ SB 3Mc G 3 ln R out, 33) k B 3κ 4πρ c M c R c, M atm. M c M atm = β M atm + M c ) 4. 34) M c 2/3

3 14, β. β = σ SB κ M c ) 4 µmu π G 3 5 k B 36ρ c ) 1/3 ln R out R c. 35) 34) M c, dm atm /dm c =, M c,crit, M c,crit = ) 3/7 27 M c 25 256β M /10 6 yr, lnr out /R c ) 0.5. ) 3/7 κ 1cm 2 g 1 ) 3/7 M. 36),.. Ikoma et al., 2000). ) 0.2 0.3 ) 0.2 0.3 M c fd,atm M c,crit = 10 M /10 6 M. 37) yr f g,atm, 10. 3.3, 2, r c. 2. r, r d.,, F in, Ṁ, Ṁ = πr 2 c F in.,, 2., ν = αc s H Shakura and Sunyaev, 1973). ν, α. ν,,.

3 15 2 Canup and Ward, 2002), Canup and Ward 2002)., 2,.,.,.,., σ G / t = 0., σ G t = 1 Ṁ 2πr r + F in = 0, 38), σ G, Ṁ r = 2πrF in. 39) Ṁ r, Ṁ = 2πrσ G v r. v r. 1,, 2,.,, v j t + v v i j = 1 P + 1 p ij + x i ρ g x i ρ g x j x j GM r ). 40)

3 16, M, p ij. p ij = 2ρ g ν e ij 13 ) e kkδ ij, e ij = 1 vi + v ) j. 41) 2 x j x i 1, 2, 3. 40) r, φ, z). φ, v φ ρ v r r + v φ 1 r v φ φ + v v φ z = ρν 2 v φ + ρν 2 v r r 2 φ ρν 1 r 2 v φ + ν ρ r z + 1 r v φv r vφ r v φ r ) ). 42), v φ., 2 2 = 2 / r 2 + /r r+ 2 /r 2 φ 2 + 2 / z 2., φ,,. z,., v z = 0, / φ = 0. z, σ G v r r r2 Ω) r = r r 3 σ G ν Ω ). 43) r, Ω, Ω = v φ /r. Ω Ω K Ω K ), Ω = GM /r 3 43), g r = Ṁ h r. 44) g, g = 3πσ G hν. h, h = rω 2. 38), 44). r r c, Ṁ r c < r < r d, r < r c, r = r c, Ṁ., r c < r < r d. r > r c,, F in = 0., Ṁ,,, Ṁ, Ṁ = Ṁ0 = const. 44) r c r d, Ṁ 0 h h d ) = g g d ) = g. 45), r = r d, g = g d, r = r d, g d = 0.

3 17 r < r c. r < r c,, Ṁ r. Ṁdh/dr = dṁh)/dr hdṁ/dr 44), h r 1/2, hṁr) + gr) = 4 5 πf inrch 2 c rph 2 p ) + A. 46), h c = r c 2 Ω c, h d = r d 2 Ω d, r P. A. r = r P, gr P ) = 0., A = Ṁph p 4 5 πf inr 2 ph p., Ṁ P. r = r c., Ṁ = Ṁ0, r = r c, h c Ṁ 0 + Ṁ0h d h c ) = 4 5 πr c 2 h c F in + Ṁph p 4 5 πf inr p 2 h p, 47) Ṁ 0 h d Ṁph p = 4 5 πf inr c 2 h c r p 2 h p ). 48),,,.,, r d,., 48), 49), Ṁp + Ṁ0 = Ṁ πf inr p 2. 49) Ṁ 0 h d πf in r c 2 πf in r p 2 + Ṁ0)h p = 4 5 πf inr c 2 h c r p 2 h p ). 50), h p = r p 2 Ω p,, Ω d = GM GM r 3 d, Ω c = r 3 c, Ω p = GM r 3 p, Ṁ 0 r 1/2 d r 1/2 p ) = πf in r 2 c r 1/2 p + 1 5 πf inr 5/2 p + 5 4 πf inr 5/2 c, 51) [ ) 1/2 2 4 rc Ṁ 0 = πf in r c + 1 ) ] [ 2 rd ) ] 1/2 1 rp 1 1. 52) 5 5 r p r c r p

3 18 Ṁ 0, Ṁr > r c), Ṁr < r c ). Ṁr > r c ) = Ṁ0, = πf in r c 2 [ 4 5 rc r p ) 1/2 + 1 5 rp r c ) ] [ 2 rd ) ] 1/2 1 1 1. r p 53) rc Ṁr < r c) = 2πrF in dr Ṁ0, 54) r [ ) ] 2 2 r = πf in r c 1 4/5)r c/r p ) 1/2 + 1/5)r p /r c ) 2 1.55) r d /r p ) 1/2 1 r c,, r p /r c ) 2 1, r d /r p ) 1/2 1., [ ) ] 1/2 4 rc Ṁr > r c ) = Ṁ0 Ṁ, 56) 5 r d [ ) 2 r Ṁr < r c ) Ṁ 1 4 ) ] 1/2 rc. 57) 5,. r c r d r > r c ), r < r c ), [ σ G r) 4Ṁ rc 15πν r σ G r) 4Ṁ 15πν rc r d ]. 58) [ 5 4 rc 1 ) ] 2 r. 59) r d 4 r c

3 19 3.4,,,,.,.,.. r,, GM P Ṁ/r) r GM P Ṁ r 2 r. 60),, Ėν,,, Ė ν = 9 4 νω2 σ G 2πr r. 61) Ė rad = 2σ SB T d 4 2πr r. 62), T d., T d, 9 4 νω2 σ G 2πr r = 2σ SB T 4 d 2πr r, 63) [ T 4 d 9Ω2 νσ G = 3Ω2 r 2 c F in 1 4 rc 1 ) ] 2 r. 64) 8σ SB 5 r d 5 8σ SB T d F in 1/4, α σ G. r c.,,.,

3 20,. Canup and Ward, 2002). [ ) ] 4 T 4 c T 4 d + 3 1 2 Tneb T d τt d 4. 65) τ.,, T d T c. 3) Canup and Ward 2002).,. 25R J 1000K,, r 20R J 200K,.

3 21 3, Canup and Ward, 2002) T d, T c. 4. τ G τ G ) τ G = 10 4 yr, τ G = 5 10 6 yr,.

3 22 3.5, r. r 2πr r/f. f -., m s. τ acc = fm s 2πr rf in. 66) r e, r/r 2e.,,,.,,,.,,. e τ col, τ drag, τ dw., e τ relax, e τ col = τ relax, τ drag = τ relax, τ dw = τ relax., e, τ dw = τ relax., τ dw = τ relax e. Ward 1988), τ dw = 1 ) ) M M c ) 4. 67) C e Ω M σ G r 2 rω,, τ relax = 0.73 ) ) M M v ) 4 [ln 2Λ] 1 Ω M σ S r 2. 68) rω, σ S, v,. τ dw = τ relax,, v

3 23 v dw, 67) 68), ) ) 1 M M c ) 4 0.73 = C e Ω M σ G r 2 rω Ω v dw = c σs σ G M ) ) vdw M ) 4 [ln 2Λ] 1 M σ S r 2, 69) rω ) 1/4. 70), e. v dw v K σs Γ σ G ) 1/4 ) H e. 71) r Γ 1. r m s, σ S σ S = m s /2πr r., ) 1/4 ) m s H e, 72) 2πr rσ G r ) 1/4 ) H 4πr 2 e 5/4, 73) σ G r ) 1/5 ms. 74) ms e H r 4πrHσ G 74) 66), τ acc fσ G F in ms 4πrHσ G ) 4/5. 75),..,. τ 1. τ 1 = 1 C a Ω Mp m s ) Mp r 2 σ G ) ) 2 H. 76) r C a 1. 76), H/r) c/rω) 0.1.,.

3 24 3.6 τ acc, Type I migration., τ acc τ 1 m s,, m c., m crit /M P. 75) 76), fσ G F in mc 4πrHσ G ) 4/5 = 1 C a Ω Mp m s ) Mp r 2 σ G ) ) 2 H. 77) r, F in F in = M P /τ G πr c 2., τ G = M P dm/dt) 1. 77), fσ G M P πr c 2 τ G mc 4πrHσ G ) 4/5 = 1 C a MP m c ) MP r 2 σ G ) ) 2 H. 78) r, σ G r < r c,. [ σ G = 4F 5 15πν 4 rc 1 ) ] 1/2 r, 79) r d 4 r c 0.2 ) Fin r ) 2 rc ) 2. 80) α Ω H r, ν = αch, H/r c/rω, r/r c = 0.5, r/r d = 0.2., 78), f M P 3 0.2Fin αω ) 6/5 r H ) 12/5 rc ) ) 12/5 4/5 1 2 πrc τ G m 9/5 c = H2 r 4πrH C a r 4. 81), mc M P ) ) 5/9 ) 26/9 ) 10/9 ) 2/3 π H r α 5.4 Ωτ G f) 1/9 82) C a r r C f ) 5/9 ) 26/9 ) 10/9 ) 2/3 3.5 H/r 5.6 10 5 r/rc α/f χ 0.1 0.5 3 10 5 83) C a χ χ [1week/2 /Ω))f/10 2 )τ G /10 7 yr)] 1/9, m crit /M P, 1. H/r), r

3 25, H/r) 0.1. r c, r/r c ), 1. m c /M P, α, f. α,..,. - f. 3.7 r. 1 R P < r < r c. MT M P ) = rc m crit/m P ) R P r dr. 84) r, r/r e. e, 74), F in = M P /τ G πr c 2, σ G 80), r H 84), MT M P ) = mc ) 1/5 α 4πrH 0.2 rc R P rc 1 R P r m c 1 M P H 1 C a ) 1/5 πrc 2 τ G Ω M P ) 1/5 ) 2/5 ) 2/5 H r. 85) r r c mc απr 2 ) 1/5 ) 2/5 ) 2/5 c τ G Ω H r dr, 0.8πrHM P r r c 86) ) 4/9 ) 10/9 ) 8/9 ) 1/3 H r α 1 dr. r r c f 1/9 Ωτ G f) 87), H/r, f,, r c R P,. MT M P ) 1 3.5 C a 2.5 10 4 1 χ ) 4/9 ) 10/9 ) 1/3 H α 1 r f ) 4/9 3.5 H/r 0.1 1, α/f). C a. 88) 1/9 Ωτ G f) ) 1/3. 89) ) 10/9 α/f 3 10 5

3 26 α.,, α 10 4 < α < 10 2., α 3, M T /M P 1. M T /M P.

4 27 4 Canup and Ward 2006)..,,.,, Type I migration.,,,.,,,.,,,,.,,. Canup and Ward 2006),,.,.

5 Canup and Ward 2006 28 5 Canup and Ward 2006 Canup and Ward 2006) A common mass scaling for satellite systems of gaseous planets. 5.1 10 4 ) 10 4. 5.2,,,,, 10,,.,,. )..

5 Canup and Ward 2006 29.,. M T M P, M T /M P 1.1 10 4 2.5 10 4.,., ) H + He).,M T /M P ) 10 4 ). M T /M P ) = 0.012 M T /M P ) 0.1...,,,,.,,.,.,,. 10 4,.,,,. 5.3,, 10 2 10 3.,, ),

5 Canup and Ward 2006 30., Fig ).,.,,,.,.,,.,,...

5 Canup and Ward 2006 31 4 a, ).. b,. F in 1/r) γ in r γ in ), r in r c ). F in f. ν r 2 /ν, ν = αch ). α 1 c H. ν F in / F in in, σ G. γ in = 0, r r c, σ G 0.3F in r c 2 /ν)[1.2 r c /r d r/r C ) 2 /4] 0.21/α) F in Ω 1 )r/h) 2 r c /r) 2 r/r c ) = 0.5, r c /r d ) = 0.2 ref.9 ). r d,ω r. r c 10R P.,,., 10 4 < α < 0.1,r r c 30R P τ ν 1/α).,,,,. f 10 2., f 3 30.,, f.,,, f.

5 Canup and Ward 2006 32 5.4.,,. m s /M p ), m s /M p ) 2. m s..,, 1,. e) a) τ e,τ 1, τ e = e/ ė, τ 1 = a/ ȧ. τ 1 = 1 C a Ω Mp m s ) Mp r 2 σ G ) ) 2 H = C e τ e r C a H/r) 2. 5.A.1) C a C e 1. σ G. Ω = GM p /r 3 ) 1/2 r. H, c, H/r) c/rω) 0.1.,., 1.. m s τ acc τ acc fm s /2πr rf in ). F in, f -, 2πr r. e ). r/r 2e, e H/r)m s /4πrHσ G ) 1/5,,. r, τ acc fσ G /F in )m s /4πrHσ G ) 4/5. m crit, 5.A.1) τ acc = 1,m S = m crit., G,. α.

5 Canup and Ward 2006 33 G F i n/α).fig.1 ) r c,., F in M P / r C 2 G )., G M P dm/dt 1 M P. ), ) ) 5/9 ) 26/9 ) 10/9 ) 2/3 mc π H r α 5.4 Ωτ G f) 1/9, 5.A.2) M P C a r r C f ) 5/9 ) 26/9 ) 10/9 ) 2/3 3.5 H/r 5.6 10 5 r/rc α/f χ 0.1 0.5 3 10 5 5.A.3). C a,χ [1week/2 /Ω))f/10 2 )τ G /10 7 yr)] 1/9 1. m crit /M P ) χ G ) 1/9.,. H/r), r, H/r) 0.1. r c,, r/r c ), 1. 5.A.3). α - f.,., 1., f.,. m crit., 1 m crit., 1 acc ).,, m crit,m T. H/r), f,, ) rc MT m crit/m P ) = dr, 5.A.4) M P R P r ) 4/9 ) 10/9 ) 1/3 1 H α 1 3.5 C a r f Ωτ G f), 5.A.5) 1/9 2.5 10 4 1 ) 4/9 ) 10/9 ) 1/3 3.5 H/r α/f χ 0.1 3 10 5. 5.A.6) C a

5 Canup and Ward 2006 34. r C R P. R P. M T /M P ) χ, r c, α/f). 5.5 N,.. F in /f).. 4 α/f). 1. M T /M P ) 5.A.6). 5 7. M T,, 5.A.3) 5.A.6)., f = 10 2 ) 10, M T /M P = 2 10 4.

5 Canup and Ward 2006 35 5 M T, M P τ G M P /dm/dt) 1, dm/dt. τ G = 5 10 6 yr, r C = 30R P, γ in = 0. α/f) = 10 6, 5 10 5, 5 10 4,,. M T m crit 5.A.3) )., M T., m crit,. M T /M P ) α/f) 1/3, α/f) 500, 10. M T /M P ), m crit. α/f), τ G.. M T /M P ). 5.A.3) 5.A.6),..., 5.A.3), 5.A.6) M T /M P ).

5 Canup and Ward 2006 36 6 a. b c m s M P ). b c γ in = 0, r c = 30R P, 1.7 < M in /M T < 10 M in ), τ G, 2 10 5 yr 1.5 10 6 yr τ G. 3 10 6 10 7. M in /M T )... b α/f) = 5 10 4, α = 0.05, M T /M P ) = 6.1 10 4 c39 ).,α/f = 10 6 ), α = 10 4 M T /M P ) = 6.6 10 5. α/f) = 6.5 10 5, α = 0.0065 M T /M P ) = 3.0 10 4 c20 )., α/f) = 1.3 10 5, α = 0.0065 M T /M P ) = 10 4 c64 ). M T /M P ) = 1.8 10 4 c17 ), α/f) = 6 10 5, α = 0.006. 14.6R P 1.2 10 4 M P, 70. 11.3R P C C 7). ). α/f) = 1.2 10 4 c60 ), M T /M P ) = 3.3 10 4. 0.9M T,

5 Canup and Ward 2006 37. c b M T /M P ). 7 F in t) = F in 0) exp t/τ in ) σ G t) = σ G 0) exp t/τ in ). τ in 10 5 τ in years) 2 10 6 ) t = 0., r C /R P = 25, 30, 44).,,,,. a α/f),. b α/f),. 4 ). a,b, r/r c ) = 0.5, c/rω) = 0.1, τ in = 10 6 yr, τ G = τ G,last τ in M P /M T )/f 5.A.3), 5.A.6).. α T P = 500K K = 0.1. ) T P K ). 1,. 1,. 5/2 m Gap /M P C v αh/r). Cv 1-10. C v = 3, m Gap, < m lgst /m Gap >=0.2 0.1., m Gap, 1. 1 1 τ v τ i n ). 1 M T m S.

5 Canup and Ward 2006 38 5.6,,.,,...,,,, r c ).,,.. α) - f ). M T /M P ) α/f) 1/3 α/f)., α/f) 10 6 < α/f) < 5 10 4 3,,. α, f,... 4. 5 b c20 ),,.. 75 N = 7.,., N.,

5 Canup and Ward 2006 39. m s /M P ) 10 5 N lg = 4. < C lg > 17). r c 25R P r C 44R P 20 < a max /R P < 60). r c a max 2. r c, R H ) j, 3. j j = Ω P R 2/5 H Ω P, R H = a P M P /3M ) 1/3, a P, M ), r r = j 2 /GM P,,,,r /R P 10 35. r c 1.6r, r c < j >= GM P r.. T eff F 1/4 in,ref.9 )., τ G ), 5.A.3) 5.A.6) f ).,., τ in = 10 6 yr ), 15R P 200K α 10 3, K = O10 1 )cm 2 g 1, 500 K,ref.9 ),.,,,. 7 c17 1),.,,. τ in = 10 6 yr,m T /M P ) O10 4 ) 10, 2,3.

5 Canup and Ward 2006 40. ),., 98.,. ),. 27.,....., M T riton /M P 2.1 10 4.,.,., ).,. ),,. M T riton,, M T /M Neptune O10 4 ).

5 Canup and Ward 2006 41 5.7 2,3,..,.,. 10 6 years ), 10 4 M P, -.

5 Canup and Ward 2006 42..,,...,..

43 [1] Canup, Robin M., Ward, William R. : A common mass scaling for satellite systems of gaseous planets. Nature, Volume 441, Issue 7095, pp. 834-839 2006). [2] Canup, Robin M., Ward, William R. : Formation of the Galilean Satellites: Conditions of Accretion. The Astronomical Journal, Volume 124, Issue 6, pp. 3404-3423 2002). [3] Ikoma, Masahiro; Nakazawa, Kiyoshi; Emori, Hiroyuki., Formation of Giant Planets: Dependences on Core Accretion Rate and Grain Opacity., The Astrophysical Journal, Volume 537, Issue 2, pp. 1013-1025 2000). [4] Hayashi, C., Nakazawa, K., Nakagawa, Y. : Formation of the solar system. IN: Protostars and planets II A86-12626 03-90). Tucson, AZ, University of Arizona Press, pp. 1100-1153 1985). [5] Mosqueira, Ignacio., Estrada, Paul R. : Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites. Icarus, Volume 163, Issue 1, pp. 198-231 2003). [6] Lubow, S. H., Seibert, M., Artymowicz, P., Disk Accretion onto High-Mass Planets., The Astrophysical Journal, Volume 526, Issue 2, pp. 1001-1012 1999) [7] Shakura, N. I., Sunyaev, R. A. : Black holes in binary systems. Observational appearance. Astron. Astrophys., Vol. 24, pp. 337-355 1973) [8], :.. pp. 53-56 2007) [9], : - -.. 2004) [10], :.. 2008)