1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

Similar documents
30

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

TOP URL 1

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

Maxwell

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

201711grade1ouyou.pdf

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

構造と連続体の力学基礎

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

QMII_10.dvi

Note.tex 2008/09/19( )

TOP URL 1

( ) ,

all.dvi

GJG160842_O.QXD

Part () () Γ Part ,

数学概論I

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

プログラム

Bose-Einstein Hawking Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2,


6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

chap1.dvi

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

抄録/抄録1    (1)V


II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

パーキンソン病治療ガイドライン2002

研修コーナー

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

master.dvi

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

nsg04-28/ky208684356100043077

untitled

tnbp59-21_Web:P2/ky132379509610002944


第1章 微分方程式と近似解法

振動と波動

本文/目次(裏白)


64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

prime number theorem

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

LLG-R8.Nisus.pdf

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

( )


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

QMI_10.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

chap03.dvi

2000年度『数学展望 I』講義録

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

newmain.dvi

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

i Γ


N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3


1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

DVIOUT-fujin

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

i 18 2H 2 + O 2 2H 2 + ( ) 3K

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)


Transcription:

1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e ) e β(e µ) (9.3) *1 f f + f

2 9 9.1: (a) T = (b) T > µ T 1 = µ /k B T 2 = 2T 1 T 3 = 3T 1 µ 1 T = T = E > µ (9.1). (9.2) E > f(e ) = E = f() > E = E µ (9.2) µ E = µ = (9.4) T = (9.1) (9.4) f(e ) E = 9.1 δ (T > ) µ 1(b) E < E E = µ E > E >

9.1. 3 9.2: µ = µ = 9.2 µ = T = 9.1.2 E E s E s e β(e µ) 1 de x = E /k B T α = µ/k B T F (s, α) = 1 Γ(s) x s 1 e x+α dx (9.5) 1 F (s, α) (Bose-Einstein integral) µ α α *2 F (s, α) (9.5) *2 s > s 1 α 1 (John E. Robinson, Phys. Rev. 83, 678 (1951)) α

4 9 e x+α F (s, α) = 1 Γ(s) = 1 Γ(s) x s 1 n=1 e (x+α) 1 e nx = t *3 (x+α) dx x s 1 e n(x+α) dx (9.6) F (s, α) = 1 ( ) s 1 t s 1 e t nα dt = 1 ( ) s 1 Γ(s) e nα Γ(s) n=1 n Γ(s) n n=1 = n s e nα (9.7) n=1 (9.7) F (s, α) α α F (s, α) α = F (s, ) α = (9.7) F (s, ) = n s = ζ(s) (9.8) n=1 ζ(z) 9.3 s α 9.2 dk (8.16) dk 1 g = 1 *4 k dk gv 8π 3 dk = V dk (9.9) 8π3 dk 8π 3 (9.1) 1 α > 1 (9.7) X F (s, α) = Γ(1 s)α s 1 ( 1) n + ζ(s n)α n n! n= gcc (tgamma() ) n = 5 14 ζ(s) = 1 1 2 1 s X n= 1 2 n+1 nx ( 1) k n (k + 1) s k k= *3 Z Γ(z) = t z 1 e t dt *4 4 He 1 2

9.2. 5 9.3: s α i n i p(n i ) (7.111) p(n i ) = e β(ei µ)ni [1 e β(ei µ) ] (9.11) (7.97) p(n i ) ln p(n i ) p(n i ) ln p(n i ) n i= =[1 e β(ei µ) ] ln(1 e β(ei µ) ) e β(ei µ)ni [1 e β(ei µ) ] n i= = ln(1 e β(ei µ) ) [1 e β(ei µ) ]( β) β e β(ei µ) n i= e β(ei µ)ni = ln(1 + f) β(e i µ) 1 e = ln(1 + f) f ln( 1 β(ei µ) f + 1) β(e i µ)n i e β(ei µ)ni =f ln f (1 + f) ln(1 + f) (9.12) n i= S = k B {f(e i ) ln f(e i ) [1 + f(e i )] ln[1 + f(e i )]} (9.13) i S = k BgV 8π 3 {f(e (k)) ln f(e (k)) [1 + f(e (k))] ln[1 + f(e (k))]}dk (9.14) (7.87) Ξ = i (1 e β(ei µ) ) 1 (9.15)

6 9 S = J/ T = ( / T )k B T ln Ξ (9.15) S = k B ln[1 e β(ei µ) ] 1 T i i (E i µ)e β(ei µ) 1 e β(ei µ) = k B {ln(1 + f) + 1 T (E i µ)f} = k B {f ln f (1 + f) ln(1 + f)} (9.16) i (9.16) 1 P P = J V = k BT V ln Ξ = k BT ln(1 + f) (9.17) V S = P V T + V (E µn) (9.18) T (9.17) P P = k B T V i ln[1 e β(ei µ) ] = k BT g 8π 3 i i ln[1 e β(e (k) µ) ]dk (9.19) 9.3 9.3.1 E E = mv2 = p2 2 2m = h2 k 2 (9.2) 2m Ω(E ) 8.3 E E + de Ω(E )de k k = 2mE / h 2 m/2 h 2 E de Ω(E )de = gv 8π 3 dk = gv ( ) ( ) 3/2 2mE m 8π 3 4π gv 2m h 2 2 h 2 de = E 4π 2 h 2 E 1/2 de (9.21) E E +de g g = 1 1/2 9.3.2 N µ (9.1) N = Ω(E )de (9.22) = gv ( ) 3/2 2m E 1/2 4π 2 h 2 de (9.23) E β(e µ) 1 ( ) 3/2 2πmkB T 2 x 1/2 = gv π h 2 e x+α dx (9.24) 1

9.3. 7 N (9.24) µ (9.5) ( 2πmkB T N = gv h 2 ) 3/2 F ( 3 2, α) (9.25) 5.7 λ T = ( h 2 /2πmk B T ) 1/2 N = V λ 3 F ( 3 2, α) (9.26) T λ T α = µ/k B T N λ T F (s, α) µ (9.25) µ F (s, α) α N 1 (9.26) N 1 = V λ 3 F ( 3 2, ) (9.27) T N = N 1 F ( 3 2, α) F ( 3 2, ) (9.28) (9.27) F ( 1 2, ) N 1 λ T (T ) T 3/2 T N 1 (9.28) T N 1 F ( 3 2, α) (9.5) (9.7) T α (9.27) T N 1 T T = N 1 N 1 = N T c (9.26) N 1 = N F ( 3 2, ) = ζ( 3 2 ) N = T c gv λ 3 T (T c) ζ( 3 2 ) = gv h2 T c = 2πmk B ( 2πmkB T c h 2 ) 3/2 ζ( 3 2 ) (9.29) [ ] 2/3 n gζ( 3 2 ) (9.3) T c T > T c µ (9.23) N µ N T c T = T c µ = µ µ T T c µ = µ T T c (9.23) N T T c (9.22) N T T c (9.22) N T T c

8 9 9.4: T c (µ/k B T c ) (T/T c ) (9.22) (9.23) E = E = 1 ( g ) Ω() = (9.22) N (9.22) 1 1 T = 2 E > 1 T T c T > T c E = ( 9.1) E > E = T < T c (9.23) E = N N N = N + N (9.31) N = V λ 3 T ζ( 3 2 ) (T T c) (9.32) T > T c µ µ (9.25) (9.28) N V ( T T c ) 3/2 ζ( 3 2 ) = F ( 3 2, α) (9.33) 9.4 µ/k B T T/T c (9.31) F ( 3 2, ) =

9.3. 9 ζ( 3 2 ) T = T c α = µ/k B T = T = T c µ = (9.23) N T T c (9.33) T T c 9.4 T T c µ 9.1 E > 9.4 T < T c (9.33) µ µ = 9.3.3 E = = gv 4π 2 E f(e )Ω(E )de (9.34) ( ) 3/2 2m h 2 E 3/2 de (9.35) E β(e µ) 1 = 3gV 2λ 3 k B T F ( 5 2, α) (9.36) T α T < T c µ = E T T T c µ 9.4 T = T c E T < T c (9.37) (9.29) T < T c α = E = 3gV 2λ 3 k B T F ( 5 3gV 2, ) = T 2λ 3 k B T ζ( 5 2 ) (9.37) T E = 3 2 Nk BT c ( T T c ) 5/2 F ( 5 2, α) ζ( 3 2 ) (T T c ) (9.38) E = 3 2 Nk BT c ( T T c ) 5/2 ζ( 5 2 ) ζ( 3 2 ) (T < T c ) (9.39) T < T c E T 5/2 T T c E 9.5 T = E = (9.38) (9.39) C V = de/dt T T c [ ( ) 3/2 15 T F ( 5 2 C V = k B N, α) 4 ζ( 3 2 ) 3 ( ) 5/2 T 2 T F ( 1 2, α) ] dα c ζ( 3 2 ) (9.4) dt T c df (s, α)/dα = F (s 1, α). dα/dt (9.25) T T T c N dn/dt = T c dα dt = 3F ( 3 2, α) 2T F ( 1 2, α) (9.41)

1 9 9.5: T c (E/Nk B T c ) (T/T c ) 9.6: k B N = R (C V ) (T/T c ) dα/dt (9.4) (9.33) C V = k B N [ 15 F ( 5 2, α) 4 F ( 3 2, α) 9 4 F ( 3 2, α) ] F ( 1 2, α) T < T c α = (9.4) 2 C V = 15k BN 4 ( T T c (T T c ) (9.42) ) 3/2 ζ( 5 2 ) ( ) 3/2 T ζ( 3 2 ) 1.927R (T < T c ) (9.43) T c T < T c C V T 3/2 T T c 9.6 R = k B N C V 6 (3k B N/3)

9.3. 11 9.3.4 (9.14) (9.21) S S = k B [f ln f (1 + f) ln(1 + f)] (9.44) i = k B gv 4π 2 ( ) 3/2 2m h 2 E 1/2 [f ln f (1 + f) ln(1 + f)]de (9.45) ln(1 + f) = ln (9.44) β(e µ) e = β(e µ) + ln f (9.46) e β(e µ) 1 f ln f (1 + f) ln(1 + f) = f ln f (1 + f)[β(e µ) + ln f] (9.45) S = k B gv 4π 2 = fβ(e µ) [β(e µ) + ln f] = fβ(e µ) + ln[1 e β(e µ) ] (9.47) ( ) 3/2 2m [ ( h 2 E 1/2 fβ(e µ) ln 1 e β(e µ))] de (9.48) (E µn)/t P V/T J P = V J = k BT V ln Ξ = k BT V ln i = k B T ln[1 e β(e µ) ] = k B T V V = gk BT 4π 2 i ( 2m h 2 1 1 e β(e µ) ln[1 e β(e µ) ] gv 8π 3 dk ) 3/2 E 1/2 ln[1 e β(e µ) ]de (9.49) (9.48) P V/T S = E µn + P V (9.5) T T 9.2 (9.49) *5 P = 2 gk B T 3 4π 2 (9.37) ( ) 3/2 2m h 2 E 1/2 β e β(e µ) 1 de = gk BT λ 3 T F ( 5 2, α) (9.51) P = 2E (9.52) 3V (9.5) S = 1 T ( ) 5 3 E µn (9.53) *5 1 h E 3/2 ln(1 e β(e µ) ) i E ln(1 e β(e µ) ) e β(e µ)

12 9 9.7: (S/k B N T/T c ) E (9.38) (9.39) µ (9.33) 9.7 k B N T = S = 9.4 T T c 1 g J J = k B T ln Ξ = gk B T ln 1 1 e β(e µ) (9.54) J µ 9.8 µ J µ = J µ = µ = V

9.4. 13 9.8: k B T J (J/gk B T µ/k B T ) E /k B T = 1 9.9: J (J/gk B T µ/k B T ) T/T c =.5 k B T.

14 9 P J = k B T ln Ξ = k B T i (1 e β(e µ) ) (9.55) = 2 gv 3 4π 2 = 2 3 ( ) 3/2 2m h 2 E 3/2 de (9.56) e β(e µ) 1 gv λ 3 k B T F ( 5 T 2, µ k B T ) (9.57) 9.9 µ = J T < T c N N N N µ J µ = T < T c µ = 9.5 9.5.1 T c T < T c N N N N = N N E = 1 1 T c (Bose-Einstein condensation condensate) N (9.31) (9.32) (9.29) N = N N = N V ζ( 3 ( ) ] 3/2 T [1 λ T 2 ) = N T c (9.58) 9.1 1 2 (macroscopic quantum effect) ( 4 He)

9.5. 15 9.1: N /N. ( 87 Rb, 23 Na *6 ) 1% *7 2 9.5.2 T c, (transition temperature) (9-3) V N g [ ] 2/3 T c = h2 N 2πmk B ζ( 3 2 )gv (9.59) T c 3.1 K 2.17 K T c 1 K 1 K T c 13 K (9.59) λ 3 T (T c) = ζ( 3 2 )gv (9.6) N *6 17 nk 2 µk E. A. W. C. E. 21 *7 J. Klaers et al., Bose-Einstein condensation of photons in an optical microcavity., Nature 468, 545 (21).

16 9 λ T (T c ) T c g = 1 ζ( 3 2 ) 2.612 1 1 5.7 *8 9.6 (9.1) µ 1 1 f(e ) e β(e µ) (9.61) 9.1 µ µ µ λ 3 T V (9.62) N (9.6) ( ) T [gζ( 3 2 )]1/3 1 (9.63) T c *8 P. W. Anderson, More is different., Science 177, 393 (1972).

9.6. 17 9.11: α. T c 9.11 (9.33) α T/T c T c 1 T c = 3.1 K 3 K (9.62) α N r T cr (9.29) (9.24) λ 3 T (T cr) = gv N r ζ( 3 2 ) (9.64) ( ) 3/2 ( N T = N r T cr ) 3/2 F ( 3 2, α) ζ( 3 2 ) (9.65). 9.14 α N/N r T cr 1 1 α 6 1 1 6 1 6 α = ( )

18 9 9.12: α.n r T cr 9.7 9.7.1 19 3Nk B N 19 T 3 a 9.11(a) x 2a x 9.11(b) 2a 2a 2a 9.11(c) 1 5 1 2π/L 2π/2a

9.7. 19 9.13: (a) k = 2π/3a, (b) k = 2π/2a, (c)k = 2π/(6/7)a k = 2π/6a. 2(2π/2a)/(2π/L) = L/a = N x a N x x y z 3 N x N y N z = N N L 3 2 1 3 3 (phonon) 1 1 3 z 1-1 1 2 3N N 5.6 Ω ν Ω ν (ν)dν = 4πgV c 3 ( 1 ν 2 dν = 4πV + 2 c 3 t c 3 l ) ν 2 dν (9.66) g V = L 3 c l c t 3N 1 (Debye model) ( 1 Ω ν (ν)dν = 4πV + 2 ) c 3 ν 2 dν = 3N (9.67) t c 3 l

2 9 νd Ω ν (ν)dν = 9N 1 ν 2 dν (9.68) hν hν (phonon) µ = E E = νd C V = E/ T C V = νd hνf(hν)ω ν (ν)dν = 9N ν 3 D hνf(hν)ω ν (ν)dν = 9k BN ν 3 D = 9Nk B ( T Θ D ) 3 ΘD/T ν 3 D νd νd hν 3 e βhν dν (9.69) 1 h 2 ν 4 e βhν 1 (e βhν 1) 2 dν (9.7) (k B T ) 2 x 4 e x (e x dx (9.71) 1) 2 βhν = x hν D = k B Θ D T 1 T 1 T 1 e x 1 e x 1 x C V T Θ 3 D νd x 2 dx = 3k B N (9.72) 3 6 (9.71) F (4, ) = ζ(4) = π 4 /9 C V 9Nk B ( T Θ D ) 3 4x 3 e x 1 = 9Nk B ( T Θ D ) 3 Γ(4)ζ(4) = 12π4 5 k BN T 3 ( T Θ D (9.73) ) 3 (9.74) ν 3N E = 3Nhν(n + 1 2 ) (9.75) n 1 g = 1 (Einstein model)

9.7. 21 9.14: (9.67) 2 E = 3N hν e βhν 1 (9.76) ( ) 2 hν e βhν C V = 3Nk B k B T (e βhν 1) 2 = 3Nk B ( Θ T ) 2 e Θ/T (e Θ/T 1) 2 (9.77) Θ = hν/k B Θ /T 1 e Θ/T 1 e Θ/T 1 Θ /T (9.77) C V 3Nk B (9.78) 6 1 3 (9.77) C V 9.12 9.7.2 5 (E (λ)/λ)ω(λ) E (ν)ω(ν) Ω(ν) (5.77) Ω(ν) = 4πgV c 3 ν 2 (9.79) 1 g = 2 ν E (ν) = nhν n µ = U ν = E (ν)ω(ν) = nhν 8πV c 3 ν2 = 8πV c 3 hν 3 e βhν 1 (9.8) 5

22 9 9 9.1 (9.33) 9.4 9.2 (9.5) F (s, α) df dα = F (s 1, α) (9.81) 9.3.145 g cm 3 4. k B = 1.38 1 23 J/K 6.2 1 23 /mol h = 1.5 1 34 J s T c 9.4 1 9.5 ν hν hν/k B T 1