第3章 非線形計画法の基礎

Similar documents
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

all.dvi

Chap9.dvi

201711grade1ouyou.pdf



III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

ohpmain.dvi

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

TOP URL 1

2000年度『数学展望 I』講義録

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

Title 多点局所探索に基づく大域的最適化アルゴリズム (1) Author(s) 金光, 秀雄 ; 今野, 英明 ; 高橋, 伸幸 Citation 北海道教育大学紀要, 自然科学編, 58(2): 1-10 Issue Date 2008/02 URL

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

第8章 位相最適化問題

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

第5章 偏微分方程式の境界値問題

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f


2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

重力方向に基づくコントローラの向き決定方法

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =


.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

Untitled

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =


() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

CVaR

: 1g99p038-8

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)



1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

°ÌÁê¿ô³ØII


NewsLetter-No2

: , 2.0, 3.0, 2.0, (%) ( 2.

日歯雑誌(H22・7月号)HP用/p06‐16 クリニカル① 田崎

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init




function2.pdf

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

meiji_resume_1.PDF

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

P.1P.3 P.4P.7 P.8P.12 P.13P.25 P.26P.32 P.33

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

1

2

…p…^†[…fiflF”¯ Pattern Recognition

数学概論I

no35.dvi

DVIOUT

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

ver.1 / c /(13)

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

/02/18

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

IV (2)

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

1 Tokyo Daily Rainfall (mm) Days (mm)

Note.tex 2008/09/19( )

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

Transcription:

3 February 25, 2009

1 Armijo Wolfe Newton 2 Newton Lagrange Newton 2 SQP

2 1 2.1 ( ) S R n (n N) f (x) : R n x f R x S f (x ) = min x S R n f (x) (nonlinear programming) x 0 S k = 0, 1, 2, h k R n ɛ k > 0 ( ɛ k R ) x k+1 = x k + ɛ k h k

x S x S x k (k = 0, 1, 2, ) x k+1 x < r k x k x p p (convergence order) { r k} k 0 p

3 2.1 3.1 ( ) H k R n n H α > 0 : x H k x α x 2 x R n 2.1 x k S f ( x k) R n h k R n (gradient method) h k = ( H k) 1 ( ) f x k or h k H k y = f ( x k) y y R n (3.1)

3.1 ( ) 2.1 f (x) x k S f ( x k) R n H R n n (3.1) h k R n f (x) x k f ( x k + ɛh k) f ( x k) = ɛ f ( x k) h k + o(ɛ) = ɛh k Hh k + o(ɛ) αɛ h k 2 + o(ɛ)

3.2 ( ) 2.1 x k S f ( x k) R n θ [ π, π] cos θ = f ( x k) h k h k ( f x k ) (3.2) 3.3 ( ) 3.1 H R n n = I (I ) h k R n h k = f ( x k) or h k y = f ( x k) y y R n

Armijo Armijo 3.4 (Armijo ) 2.1 x k S f ( x k) R n h k R n α > 0 0 < ɛ < α ɛ R Armijo (Armijo criterion) ξ (0, 1) f ( x k + ɛh k) f ( x k) ξ f ( x k) (αh k) f(x k ) f(x k +αh k ) f(x k ) f(x k ) (αh k ) 0 α ²

f (x) 2 ξ = 1/2 ɛ α x = x k + αh k α f ( x k + αh k) = f ( x k) + T f ( x k) ( αh k) = 0 f ( x k + αh k) f ( x k) = f ( x k) (αh k) + 1 ( ) αh k T f ( x k) ( αh k) 2 = 1 2 f ( x k) (αh k) = ξ f ( x k) (αh k) f(x k ) 1 f(x k ) (αh k ) 2 0 α ²

Wolfe Wolfe 3.5 (Wolfe ) 2.1 x k S f ( x k) R n h k R n α > 0 α < ɛ ɛ R Wolfe (Wolfe criterion) Armijo ξ (0, 1) ξ (0, 1) 0 < ξ < µ < 1 µ f ( x k) (αh k) f ( x k + ɛh k) (αh k) (3.3) f(x k ) f(x k +αh k ) (αh k ) f(x k ) (αh k ) 0 α ²

3.2 ( ) 2.1 f (x) L = { x R n f (x) f (x 0 ) } U f (x) U Lipschitz h k ɛ Armijo Wolfe { x k} k θ k (3.2) f ( x k) 2 cos 2 θ k < (3.4) k=1 [1] 4.1

h k f ( x k) cos θ k > 0 and lim k f ( x k) = 0 f ( x k) 2 cos 2 θ k < k=1

Newton Newton f ( x k + h k) = f ( x k) + T f ( x k) h k = 0 3.6 (Newton ) 2.1 x k S f ( x k) R n Hesse H ( x k) = T f ( x k) R n n h k R n ɛ = 1 Newton (Newton method) h k = H 1 ( x k) f ( x k) or h k H ( x k) y = f ( x k) y y R n (3.5)

3.3 (Newton ) 2.1 f (x) 2 Hesse H(x) = T f (x) R n n a S a x Lipschiz ( C 0 : H(a) H(x) C a x ) a Newton { x k} k a 2 [1] 4.2 3.1 (Newton ) Newton Hesse T f (x) R n n (3.1) (3.5) Hesse Newton

Newton 3.7 ( Newton ) Newton Newton (quasi-newton method) BFGS (Broyden-Fletcher-Goldfalb-Shanno) DFP (Davidon-Fletcher-Powell) 3.8 ( ) A x, y x Ay = 0 x, y A = T f ( x k) h k (conjugate direction method) h k = f ( x k) + α k 1 h k 1 α 0 = 1, α k = f ( x k) ( f ( x k) f ( x k 1)) f ( x k 1) 2 (k 1)

4 1 4.1 ( ) f : R n R g (l) : R n R (l = 1, 2,, m), g = ( g (l)) l Rm x R n f (x ) = min { f (x) g(x) 0} x Rn

4.1 ( ) (barrier function method) (inner point method) P ( k x, ρ k) m = f (x) ρ k max 0, log ( g (l) (x) ) { ρ k} k (penalty function method) (outer point method) P k ( x, ρ k) = f (x) + ρ k l=1 m max { 0, g (l) (x) } { ρ k} k l=1

Lagrange Newton 4.2 (Lagrange Newton ) 4.1 x k S Lagrange L ( x k, λ ) g(x) = { g (l) (x) } l Rm, λ = { λ (l)} l Rm L ( x k, λ ) = f ( x k) + λ g ( x k) L(x, λ) x L(x, λ) R n Hesse H L (x, λ) = T L(x, λ) R n n g ( x k) + ( g ( T x k)) T h = 0 h k R n ɛ = 1 Lagrange Newton (Newton method) ( H L x k, λ ) g ( T x k) ( ) h ( ( k g T x k)) T 0 = λ f ( x k) g ( x k) (4.1)

4.1 (Lagrange Newton ) 4.1 f (x), g (x) 2 (a, µ) S R m Hesse H L (x, λ) ( 1 3.2) (x, λ) Lipschiz (a, µ) {( Lagrange Newton x k, λ )} (a, µ) k 2 (4.1) λ I A (x k+1 ) = { l {1, 2,, m} λ (l) 0 } (4.1) 4.1 h k 3.1

2 4.2 ( 2 ) 4.1 x k S f ( x k), g T ( x k) H k R n n ɛs R n Q (ɛs) = min {Q (ɛh) = 12 ( ) 1ɛ ɛh ɛh R Hk (ɛh) + f ( x k) } (ɛh) n s.t. g ( x k) + ( g T ( x k)) T (ɛh) 0 4.3 ( 2 ) 4.1 4.2 ɛs ɛh k R n { x k} k 2 (sequential quadratic programming) SQP ɛ Q (ɛh) Armijo Wolfe

4.2 ( 2 ) 4.3 g ( x k) + ( g ( T x k)) T (ɛh) = 0 ɛs = ɛh k (4.1) 1 ɛ Hk g ( T x k) ( ) ɛh ( ( k g T x k)) T 0 = λ f ( x k) g ( x k) (4.2) (4.1) H k Hesse ɛ Armijo Wolfe 4.1 f (x), g (x) x k S ( 1 3.2) (4.2) ( ɛh k, λ )

f (x) g (l) (x) (l = 1, 2,, m) H k h (0)k, h (l)k (l = 1, 2,, m) h k = h (0)k + m λ (l) h (l)k (4.3) l=1 h (0)k = ( H k) 1 f ( x k ), h (l)k = ( H k) 1 g (l) ( x k) (4.4). (4.2) 1 2 g ( (1) x k) (ɛh (1)k) g ( (1) x k)..... g ( (m) x k) (ɛh (1)k) g ( (m) x k) g ( (1) x k) + g ( (1) x k) (ɛh (0)k) =. g ( (m) x k) + g ( (m) x k) (ɛh (0)k) (ɛh (m)k) (ɛh (m)k) λ (1). λ (m) (4.5) λ R m 1

4.3 g ( x k) + ( g ( T x k)) T (ɛh) 0 KKT 1 3.4 (4.2) 2 g ( x k) + ( g ( (1)T x k)) T m ɛh(0)k + λ (l) ɛh (l)k 0 (4.6) l=1 λ g ( x k) + ( g ( (1)T x k)) T m ɛh(0)k + λ (1) ɛh (l)k = 0 (4.7) λ 0 l=1 (4.8) (4.5) λ (4.6) (4.8) I A (x k+1 ) (4.5) 4.1 ɛh k

2.... 4.1 ( 2 ) 1 k = 0 x 0 S, ɛ 2 f ( x k), g ( x k) f ( x k), g T ( x k) 3 H k R n n (3.1) h k = h (l)k h (l)k (l = 0, 1, 2,, m) 4 (4.5) λ (4.6) (4.8) (4.6) (4.8) (4.6) (4.8) I A (x k+1 ) (4.5) 5 (4.3) h k Armijo Wolfe (3.3) (3.4) f ( x k) L ( x k, λ ) ξ, µ (0, 1) (ξ < µ) Armijo ɛ ɛ/2 Wolfe Armijo ɛ 4 6 k + 1 k 2

5 Armijo Wolfe Newton 2 Newton Lagrange Newton 2 SQP

[1],,... [2]. :.. [3],.., 2002. [4] G.L. Nemhauser, A.H.G. Rinnooy Kan, and M.J. Todd, editors. [5]. :., 2003. [6] L. Armijo. Minimization of functions having lipschitz-continuous first partial derivatives. Pacific Journal of Mathematics, Vol. 16, pp. 1 3, 1966.