微粒子合成化学・講義

Similar documents
微粒子合成化学・講義

コロイド化学と界面化学

ナノ粒子のサイズ・形態制御と 構造敏感型触媒プロセスへの応用

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

master.dvi

( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

H22環境地球化学4_化学平衡III_ ppt

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

30

( ) ,

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

成長機構

all.dvi

2,200 WEB * Ξ ( ) η ( ) DC 1.5 i

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

untitled

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


IA

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

QMII_10.dvi

The Physics of Atmospheres CAPTER :

b3e2003.dvi

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

総研大恒星進化概要.dvi

液晶の物理1:連続体理論(弾性,粘性)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

Note.tex 2008/09/19( )

³ÎΨÏÀ

1

現代物理化学 2-1(9)16.ppt


KENZOU

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)


untitled

7

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

理想気体ideal gasの熱力学的基本関係式

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

H.Haken Synergetics 2nd (1978)

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

TOP URL 1

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

chap03.dvi

II 2 II

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

untitled

01_教職員.indd



2007年08月号 022416/0812 会告

ε

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E


Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius 53 Ea R T k 1 = χe 1 Ea RT k 2 = χe 2 Ea RT 53 A B A B

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

第3章

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

本文/目次(裏白)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

1

30 (11/04 )

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

日本内科学会雑誌第102巻第4号

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

i

untitled

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

all.dvi

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


19 /


Transcription:

http://www.tagen.tohoku.ac.jp/labo/muramatsu/mura/main.html E-mail: mura@tagen.tohoku.ac.jp 1

2

1 mol/l KCl 3

4

Derjaguin Landau Verway Overbeek B.V.Derjaguin and L.Landau;Acta Physicochim.,URSS, 14, 633 1941. E.J.W.Verwey and J.Th G Overbeek; Theory of the Stability of Lyophobic Colloids, 193 1948. 5

6

7

8

9

10

11

12

13

14

-Si-O-H -Si-O + H + 15

16

17

18

19

0 Helmholtz 0 20

0 Gouy-Chapman 0 21

0 Stern Stern Stern 0 Slip 22

23

0=Stern d 0 24

25

z+ eψ n+ = n + exp (1) 0 kt z eψ n = n0 exp kt n: n 0 : z: k: T: ψ: +,-: 26

ψ0 c RT c ψ 0 = ln zf c (2) R: c 0 : c at ψ 0 = 0 0 27

Poisson 2 2 2 ψ ψ ψ ρ Δ ψ = div (grad ψ ) = + + = 2 2 2 x y z ε ε ε r : ε 0 : ρ: r 0 (3) 28

29 ρ: n n n z z z = = = = + + 0 0, = = = + kt ze nze kt ze kt ze nze n n ze ψ ψ ψ ρ sinh 2 exp exp ) ( (4)

Poisson-Boltzmann (3),(4) x 2 d ψ 2nze zeψ = sinh (5) 2 dx ε ε kt r 0 (5) zeψ zeψ 0 tanh = tanh exp( κx) 4kT 4kT (6) 30

zeψ kt <<1 (5) d dx 2 ψ 2 2 = κ ψ κ = 2 2 2 2 nz e ε ε kt r 0 25 9 κ = 3.3 10 z c (7) ψ = ψ exp( κ ) 0 x (7) (8) (9) (10) Debye-Huckel 31

32

: h P P = P E + P O P P E O = = ( n ε + r ε 2 + 0 n 2 dψ dx ) kt 2nkT (15) (16) 33

P O P E ψ 0 P E (1) (16) P O P R (h) P R zeψ h / 2 ( h) = 2nkT cosh 1 kt ψ 2/h : (17) 34

ψ h/2 ψ s(h/2) zeψ / 4kT << 1 then tanh( zeψ / 4kT) zeψ / 4kT (6) ψ<20 mv ψ γ ( h / 2) = 8kT h = γ exp κ ze 2 zeψ 0 tanh 4kT (18) (19) 35

(17) ze ψ 2 h / 2 / kt << 1 then PR ( h) nkt{ zeψ h / 2 / kt} (18) κh>1 h cosh y 1 + y 2 P R 2 ( h) = 64nkTγ exp( κh) (20) 36

V R ( h) h = P R ( h) dh = 64nkT κ γ 2 exp( κ h) (21) 37

38

Derjaguin Derjaguin : a 1 a 2 H H<<a 1,a 2 P R ( H ) = 2π a a 1 2 V ( a H 1 a R + 2 (21) (22) a 1 =a 2 =a P R ( H ) = 64 π ankt κ γ 2 exp( ) κ h) (22) (23) 39

a V R ( H H ) = PR ( H ) dh 64πankT 2 = γ exp( κh) (24) 2 κ 40

zeψ 0 / 4kT << 1 then tanh( zeψ 0 / 4kT) zeψ 0 / 4kT (23),(24) zeψ 0 =4kT 1:1 25 ψ 0 =103 mv ψ 0 =20 mv zeψ 0 /4kT tanh{ zeψ 0 /4kT} 1% P V R R 20mV ( H ( H ) ) = = 2 2 π π a a ε ε r r ε ε (13) 2 0κψ 0 exp( κh) 2 0ψ 0 exp( κh) (25) (26) 41

42 ) exp( 2 ) ( 2 0 0 h a H P r R κ κψ ε ε π = ) exp( 2 ) ( 2 0 0 h a H V r R κ ψ ε ε π = (13) ) exp( 2 ) ( 0 2 H a H P r R κ ε κε σ π = ) exp( 2 ) ( 0 2 2 H a H V r R κ ε ε κ σ π = (25) (26) (27) (28) 0 0 0 κψ ε ε σ r = (13)

van der Waals aa P A ( H ) = 12H aa V A ( H ) = 12H A Hamaker 2 (29) (30) 43

44 2 0 2 12 ) exp( 2 ) ( H aa H a H P r T = κ ε κε σ π H aa H a H V r T 12 ) exp( 2 ) ( 0 2 2 = κ ε ε κ σ π H aa h a H V r T 12 ) exp( 2 ) ( 2 0 0 = κ ψ ε ε π (31) (32) (33)

45

V T ( H ) = 2 π a ε r ε ψ 2 0 κ 0 exp( H ) aa 12 H ε r, ε 0, ψ 0, A a κ 46

2 2 κ = ε nz r ε 0 2 e 2 kt e ε r ε 0 k n z T 47

n z T κ 48

V T ( H ) 2 a r 0 0 exp( H ) = π ε ε ψ κ 2 aa 12 H 49

van der Waals 50

51

van der Waals 52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

KCl 1 mol/l KCl 69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

2,3,7,8- ppm O- n- cm/day ppb 2 96

97

98

99

5.22 12.20 4.31 11.57 0.14 1.78 7.18 16.05 7.33 7.40 No data 2-1 100

10 10 587 (8.01%) 49 (16.67%) 242 (3.62%) 59 (0.81%) 1 (0.34%) 2 (0.03%) 54 (0.74%) 11 (3.74%) 26 (0.39%) 914 (12.47%) - 311 (4.65%) 81 (1.11%) 16 (5.44%) 29 (0.43%) 1614 (22.03%) 61 (20.75%) 581 (8.68%) 7327 294 6690 2-2 101

(A) [%] (B) [%] B/A 1.20 2.80 2.3 0.61 2.01 3.3 9.04 14.42 1.6 0.21 3.14 15.0 102

103

104

105

gteq/ 4300 547 707 250 20 16 3 0.2 0.07 ( ) (5140 5300) 0.78 0.06 5140 5300 106

107

108

109

( C) (ng-teq/nm 3 ) 700 700 750 750 800 800 850 850 900 900 950 950 1000 1000 36 81 77 26 25 17 30 14 13 33 11 11 7.8 7.8 7 7 390 500 1800 600 590 210 480 83 0.2 0.57 0.22 0 0 0 0.01 0 ( 1111) 79 34 43 206 380 234 85 50 110

111

112

113

114

115