untitled

Similar documents
2 8 BASIC (4) WWW Taylor BASIC 1 2 ( ) 2 ( ) ( ) ( ) (A.2.1 ) 1

2 4 BASIC (4) WWW BASIC 1 2 ( ) ( ) 1.2 3B 5 14 ( ) ( ) 3 1 1

高等学校学習指導要領

高等学校学習指導要領

., a = < < < n < n = b, j = f j j =,,, n, C P,, P,,, P n n, n., P P P n = = n j= n j= j j + j j + { j j / j j } j j, j j / j j f j 3., n., Oa, b r > P

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

(2000 )

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

di-problem.dvi

熊本県数学問題正解

) 9 81

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

2010 IA ε-n I 1, 2, 3, 4, 5, 6, 7, 8, ε-n 1 ε-n ε-n? {a n } n=1 1 {a n } n=1 a a {a n } n=1 ε ε N N n a n a < ε

入試の軌跡

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

() 800 ( p.38) r ( r r ) ( ) 6 = r = 56 8 r r = 56 8 = AD BC ( ) ( ) = 8 8 = = 8 ( ) ( 3 = 8 )

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

i

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

29

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

a a apier sin 0; 000; 000 = 0 7 sin 0 0; 000; 000 a = 0 7 ;r = 0: = 0 7 a n =0 7 ( 0 7 ) n n =0; ; 2; 3; n =0; ; 2; 3; ; 00 a n+ =0 7 ( 0 7 ) n

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

RIMS98R2.dvi

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

Chap10.dvi

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

Z: Q: R: C: 3. Green Cauchy

Z...QXD (Page 1)

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4

高校生の就職への数学II

koji07-02.dvi

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

Chap11.dvi

Part () () Γ Part ,

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

( )


TOSM kanie/tosm/ HP kanie/agora/ kanie/ h

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

untitled

Δ =,, 3, 4, 5, L n = n

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

1 I

- II

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ


No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X


1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

ii

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

meiji_resume_1.PDF

- 2 -

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

70 : 20 : A B (20 ) (30 ) 50 1


I

Transcription:

2 (numerical algorithm) 2. = ratio of the circumference to its diameter, number, Ludolph s number... sin, cos =3.45926535... 0 e x2 dx = /2 etc. : 999 : 99 : 974 P.: 973, J.-P.: 200 J. Arndt, Ch. Haenel: Unleashed, Springer, Berlin Heidelberg, 200 2.2 mathematics a, b. b = Pythagoras (572-492 B.C.) b =2/ 3 3 <<3 2 =2 3=3.464 3 2 5

a b 2.. half hexagon 2.2. n 2n O, /n LMN; LON : n /n n = LN =2a; LOT : n /(2n) n /2 = LT = b; LOM : 2n /(2n); 2n = LM =2a ; POQ : 2n /(2n) 2n = PQ =2b ; n OT LON LT LT H OTL LH : LT = OL : OT. OT 2 =+b 2 a = b +b 2 (2.) 2n a = b +b 2 (2.2) n 2n TPM TLH bb = a(b b ) (2.3) 6

T P b M Q L 2a a H N O 2.2. n-polygons 7

(2.) (2.3) a b = b + +b 2 (2.4) n =2A, n =2B, 2n =2A, 2n =2B A = na = nb +b 2, B = nb, A = 2na = 2nb +b 2, B =2nb = C = +b 2,C = +b 2 A = B/C, B = 2B +C, 2nb + +b 2 ( = ( B 2 B + )), A (2.5) (2.6) A = B /C n =4 2 m+ (m =, 2,...) 2l m, 2L m 2l m 2A 2L m 2B L =4, (2.7) { l n = L n / +(L n /2 n+ ) 2, (n =, 2,...) (2.8) L n+ = 2/ (/l n +/L n ), (recurrence formula) L,l, }{{} L 2,l 2, }{{} 8 L 3,l 3,... }{{} 6 8

2.2.2 () 0 <l n <<L n (2) l n <l n+ <L n+ <L n {l n } {L n } (3) 2 2=l <l 2 < <l n <l n+ < <L n+ <L n < <L 2 <L =4 (4) l = lim n l n, L = lim n L n (5) l = L = 2.2.3 (2.8) L n L n+ = 2 + + L n = ( ) Ln + L n+ 2 l n ( Ln 2 n+ ) 2 + 2 6 2 + 2n O(2 4n ) (n ) L n = O(2 2n )=O(4 n ) (n ) (2.9) log 0 4=0.6020... n L n 0 0.6 Ludolph van Ceulen(540-60, ). 2.2.4 2 m+ (m =, 2,...) 2 n+ n ln Ln 2.82842724746898 4.0000000000000000 2 3.06467458920783 3.337084989847607 3 3.2445522580524 3.82597878074528 9

4 3.365484905459398 3.57249074292564 5 3.4033569547534 3.4483852459047 6 3.42772509327738 3.422236299424577 7 3.4538044308 3.4750369689670 8 3.45729403670922 3.4632080703823 9 3.4587725277605 3.4602502568095 0 3.4594252006 3.459577495898 3.459234557089 3.45932696293085 2 3.45925765848738 3.45928075996455 3 3.4592634338564 3.45926920922557 4 3.45926487769870 3.4592663254094 5 3.45926523865925 3.4592655996980 6 3.45926532889937 3.459265493954 7 3.4592653545942 3.4592653740946 8 3.45926535709939 3.4592653627394 9 3.45926535850938 3.4592653599940 20 3.4592653588694 3.459265359244 2 3.45926535895009 3.45926535903820 22 3.4592653589722 3.4592653589944 23 3.45926535897762 3.4592653589833 24 3.45926535897900 3.45926535898033 25 3.4592653589793 3.45926535897967 26 3.45926535897940 3.45926535897949 27 3.45926535897949 3.45926535897949 28 3.45926535897949 3.45926535897949 29 3.45926535897949 3.45926535897949 30 3.45926535897949 3.45926535897949 2.2.5 real numbers R integers Z rational numbers Q algebraic numbers transcendental numbers 0

J.H. Lambert (728-77, ): (76) C.L.F. Lindemann (852-939, ): (882) 2.3 tan x tan 6 =, tan 4 = etc. Taylor (Maclaurin ) f(x) =f(0) + f (0)x + f (0) x 2 + 2 2.3. Gregory Leibniz J. Gregory (638-675, ) G.W.F. Leibniz (646-76, ) tan x arctan x 4 = arctan d (arctan x) = dx +x 2 0 dx +x 2 = 4 +x 2 = x 2 + x 4 x 6 + +( ) n x 2n +, ( x < ) dx +x 2 = x 3 x3 + 5 x5 7 x7 + + ( )n 2n + x2n+ + arctan x Maclaurin x = 4 = 3 + 5 ( )n + + + (2.0) 7 2n + ( ) n = 4 2n + = (4m + )(4m +2), 4 n=0 M m=0 m=0 (4m + )(4m +2) = O ( ) (4M + 3)(4M +4) ( ) = O 6M 2

M =0 (6M 2 ) 6.2 0 4 /( + x 2 ) Maclaurin 2.3.2 Sharp / 3 0 dx +x 2 = arctan 3 = 6 6 = ( 3 9 + ( )n + + 5 32 (2n +)3 + n / 3 3 Gregory Leibniz Sharp 699 ) 2.3.3 2.2. n 2n LON = 2 n, LOH = n, LH =sin n, LT =tan n 2 n+ 2l n 2 n+ 2L n sin, tan Maclaurin l n =2 n+ sin 2, L n+ n =2 n+ tan (2.) 2 n+ sin x = x 3! x3 + 5! x5 7! x7 +, ( x < ) tan x = x + 3 x3 + 2 5 x5 + 7 35 x7 + ( x < 2 ) (2.) N =2 n+ ( l n = ( ) 2 ( ) ( 4 + ), L n = + ( ) 2 2 ( ) 4 + + ) 6 N 20 N 3 N 5 N ( 3 (2l n + L n )= + ( ) 4 + ) 20 N (/N) 2 {l n }, {L n } { 3 (2l n + L n )} ( l n+ = 4 2 6 2 2(n+) + 60 ) 4 20 24(n+) 2

l () n 3 (4l n+ l n )= ( 3 (l n+ l n )+l n+ = 3 ) 4 4 + 20 24(n+) L () n 3 (4L n+ L n )= ( 3 (L n+ L n )+L n+ = 3 ) 4 2 4 + 5 24(n+) 2 4 6 extrapolation 664 739, 2 0 (n =9) 4 2 n+ n ln Ln accelerated 2.82842724746898 4.0000000000000000 3.2895464974597 2 3.06467458920783 3.337084989847607 3.455478056087323 3 3.2445522580524 3.82597878074528 3.4829394968778 4 3.365484905459398 3.57249074292564 3.46072967378 5 3.4033569547534 3.4483852459047 3.4593566385369 6 3.42772509327738 3.422236299424577 3.4592706026680 7 3.4538044308 3.4750369689670 3.4592657525237 8 3.45729403670922 3.4632080703823 3.4592653824559 9 3.4587725277605 3.4602502568095 3.4592653603704 0 3.4594252006 3.459577495898 3.45926535906635 3.459234557089 3.45932696293085 3.45926535898486 2 3.45925765848738 3.45928075996455 3.45926535897980 3 3.4592634338564 3.45926920922557 3.45926535897944 4 3.45926487769870 3.4592663254094 3.45926535897944 5 3.45926523865925 3.4592655996980 3.45926535897944 6 3.45926532889937 3.459265493954 3.45926535897944 7 3.4592653545942 3.4592653740946 3.45926535897944 8 3.45926535709939 3.4592653627394 3.45926535897944 9 3.45926535850938 3.4592653599940 3.45926535897936 3

20 3.4592653588694 3.459265359244 3.45926535897944 2 3.45926535895009 3.45926535903820 3.45926535897944 22 3.4592653589722 3.4592653589944 3.45926535897944 23 3.45926535897762 3.4592653589833 3.45926535897944 24 3.45926535897900 3.45926535898033 3.45926535897944 25 3.4592653589793 3.45926535897967 3.45926535897944 26 3.45926535897940 3.45926535897949 3.45926535897944 27 3.45926535897949 3.45926535897949 3.45926535897949 28 3.45926535897949 3.45926535897949 3.45926535897949 29 3.45926535897949 3.45926535897949 3.45926535897949 30 3.45926535897949 3.45926535897949 3.45926535897949 2.3.4 Euler Machin L. Euler (707 783, ) key idea tan(a B) = a =tana, b =tanb ( ) a b A B = arctan +ab tan A tan B +tana tan B (2.2) Euler (748) 4 = arctan = arctan ( ) ( ) + arctan 2 3 (2.3) John Machin (706) 4 = arctan = 4 arctan ( ) 5 ( ) arctan 239 (2.4) 4 arctan 20 = A tan A = 5 9 (2.4) Machin arctan ( 4 =4 5 3 5 + 3 5 5 ) ( ) 5 7 5 + 7 239 3 239 + 3 5 239 + 5 O(5 2n ) 4

n Gregory-Leibniz Sharp Machin 0 4.0000000000000000 3.464065377548 3.832635983263602 2.6666666666666670 3.079204356780042 3.405970293260603 2 3.4666666666666668 3.568475699543 3.4620293250346 3 2.8952380952380956 3.37852895956805 3.45977282773 4 3.3396825396825403 3.426047456630850 3.45926824043994 5 2.97604676046765 3.43087854628836 3.4592652653086 6 3.2837384837384844 3.4674326988380 3.45926536235550 7 3.07078707878 3.456875947844 3.45926535886025 8 3.252365934788767 3.459977385062 3.45926535898362 9 3.04839689294032 3.4590509380806 3.45926535897922 0 3.232358094055939 3.45933045030822 3.45926535897940 3.0584027659273332 3.45924542876468 3.45926535897940 2 3.284027659273333 3.4592750203804 3.45926535897940 3 3.07025467779854 3.4592634547344 3.45926535897940 4 3.20885652269439 3.459265952743 3.45926535897940 5 3.07953394974278 3.4592657339980 3.45926535897940 6 3.200365554095489 3.4592654725758 3.45926535897940 7 3.08607980238346 3.4592653406658 3.45926535897940 8 3.9487909239425 3.45926536478267 3.45926535897940 9 3.096238066678399 3.4592653574038 3.45926535897940 20 3.8984782277596 3.45926535956356 3.45926535897940 2 3.09665264636424 3.45926535879342 3.45926535897940 22 3.8505045352534 3.45926535903873 3.45926535897940 23 3.0999440323738079 3.45926535896044 3.45926535897940 24 3.85766854350325 3.45926535898548 3.45926535897940 25 3.034532886027 3.45926535897745 3.45926535897940 26 3.7867009992202 3.45926535898002 3.45926535897940 27 3.05889738279475 3.4592653589798 3.45926535897940 28 3.76065768684385 3.45926535897944 3.45926535897940 29 3.08268566698947 3.45926535897936 3.45926535897940 30 3.73842337907505 3.45926535897940 3.45926535897940 2.4 Gregory Leibniz O(n 2 ) n 5

Machin O(c an ) (c>) E. Salamin R.P. Brent (976). 2. Landen (Landen transformation) 3. Legendre (Legendre formulae) 206, 58, 430, 000 (999 0 ) ftp://pi.super-computing.org/readme.our latest record Pascal A 0 =,B 0 =,T 0 = 2 4,X 0 = n := 0 while abs(a n B n ) >εdo begin A n+ := (A n + B n )/2; B n+ := A n B n ; T n+ := T n X n (A n A n+ ) 2 ; X n+ := 2X n ; n := n +; end; := (A n+ + B n+ ) 2 /(4T n+ ) 2.4. agm arithmetic-geometric mean (agm) a 0,b 0,c 0 :, a 2 0 = b 2 0 + c 2 0 a n = 2 (a n + b n ), b n = a n b n (c 2 n = a2 n b2 n ) (2.5) lim a n = lim b n agm(a 0,b 0 ) 6

. a n >b n 2. b n <a n <a n 3. b n <b n 4. b n <b n <a n <a n 5. {a n }, {b n } 6. ā = lim a n, b = lim b n n n 7. 2a n = a n + b n ā = b agm c n = 2 (a n b n ) 0 < <c n+ <c n < <c 2 <c c 2 n =4a n+c n+ c n+ = c2 n = 4a n+ 4a n+ ( ) c 2 2 n = = 4a n c < 0 c 2(n+2) (2 2 2 4 2 8 2 2(n+) )(a n+ a n a ) 2.4.2 I(a, b) = /2 0 dt /2 a2 cos 2 t + b 2 sin 2 t, J(a, b) = 0 a 2 cos 2 t + b 2 sin 2 tdt agm Landen I(a n,b n )=I(a n+,b n+ ), J(a n,b n )=2J(a n+,b n+ ) a n b n I(a n+,b n+ ) ( agm(a 0,b 0 ) I(a 0,b 0 )= 2, J(a 0,b 0 )= a 2 0 2 ) 2 j c 2 j I(a 0,b 0 ) (2.6) j=0 Legendre (b/a) 2 +(b /a ) 2 = a 2 I(a, b)j(a,b )+a 2 I(a,b )J(a, b) a 2 a 2 I(a, b)i(a,b )= 2 aa (2.7) a 0 = a 0 =,b 0 = k, b 0 = k (k 2 + k 2 =) (2.6), (2.7) = 4agm(,k)agm(,k ) 2 j (c 2 j + c 2 j ) j= 7

k = k =/ 2 = 4 ( agm(, / 2) ) 2 2 j+ c 2 j j= k, k 2.4.3 0 <k,k <, k 2 + k 2 = a 0 =,b 0 = k {a n,b n,c n } agm = agm(,k) a 0 =,b 0 = k {a n,b n,c n} agm = agm(,k ) NN 4a N+ a N + N N 2 j c 2 j 2 j c 2 j j= j= NN < [ ( 8 2 2 N exp agm ) )] agm agm agm 2N+ +2 N exp ( agm agm 2N + (2.8) 2 NN = N N < 2 2 N+4 agm 2 exp( 2 N+ ) (2.9) 0 ( ) ( ) log 0 N > 2 N+ N log log 0 0 2 2log 0 agm N O(c an ); O(c an ) 8