MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

Similar documents
Lennard-Jones $($Satoshi $\mathrm{y}\mathrm{u}\mathrm{k}\mathrm{a}\mathrm{w}\mathrm{a})^{*}\text{ }$ Department of Earth and Spa

dプログラム_1

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

Nosé Hoover 1.2 ( 1) (a) (b) 1:

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

第52回日本生殖医学会総会・学術講演会

2301/1     目次・広告

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

第101回 日本美容外科学会誌/nbgkp‐01(大扉)

27巻3号/FUJSYU03‐107(プログラム)

パーキンソン病治療ガイドライン2002

本文27/A(CD-ROM

tnbp59-20_Web:P1/ky108679509610002943

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

Title 絶対温度 <0となり得る点渦系の平衡分布の特性 ( オイラー方程式の数理 : 渦運動 150 年 ) Author(s) 八柳, 祐一 Citation 数理解析研究所講究録 (2009), 1642: Issue Date URL

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)


高密度荷電粒子ビームの自己組織化と安定性

1

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

Ł\”ƒ-2005

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

0302TH0130.indd

本文/020:デジタルデータ P78‐97

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

(Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 3,4 ) $O(1)$ $O(1)$ $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N}

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

Lennard Jones Steele * K N nm imac 2015 Mac mini OS *1 N V T

esba.dvi

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)


60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開)

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

61“ƒ/61G2 P97

P_SyugojutakuKenzai_H14.pdf


点集合置換法による正二十面体対称準周期タイリングの作成 (準周期秩序の数理)

Contents

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

aisatu.pdf

Sigma

Sigma

untitled

CW3_A12220D27.indd

流体とブラックホールの間に見られる類似性・双対性

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

(Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1,.,,,,.,,.,.,,,.. $-$,,. -i.,,..,, Fearn, Mullin&Cliffe (1990),,.,,.,, $E

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

一般演題(ポスター)

研究成果報告書

E 1 GeV E 10 GeV 1 2, X X , GeV 10 GeV 1 GeV GeV π


スポーツ科学 20年度/01 目次


Title 地球シミュレータによる地球環境シミュレーション ( 複雑流体の数理解析と数値解析 ) Author(s) 大西, 楢平 Citation 数理解析研究所講究録 (2011), 1724: Issue Date URL

日本糖尿病学会誌第58巻第1号

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,,

A B C D E F G H J K L M 1A : 45 1A : 00 1A : 15 1A : 30 1A : 45 1A : 00 1B1030 1B1045 1C1030

本文/年次報告  67‐107

32号 701062/きじ1

10西宮市立中央病院/本文

北九州高専 志遠 第63号/表紙・表4

特別プログラム

Ł\”ƒ

報告書(第2回NGO‐JICA)/はじめに・目次

P-12 P P-14 P-15 P P-17 P-18 P-19 P-20 P-21 P-22

ニューガラス100/100目次

untitled


CW3_A1083D05.indd

program08.pdf

330

Title ゾウリムシの生物対流実験 ( 複雑流体の数理とその応用 ) Author(s) 狐崎, 創 ; 小森, 理絵 ; 春本, 晃江 Citation 数理解析研究所講究録 (2006), 1472: Issue Date URL

音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用)

program_japanese

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: Issue Date URL R

日本内科学会雑誌第98巻第3号

24.15章.微分方程式

基礎数学I

1 1 Emmons (1) 2 (2) 102


(Tamiki Umeda) (Hisao Nakajima) (Hirokazu Hotani) Liposomes, vesicles oflipid bilayer, have a variety of shapes: a circular biconcav

yakuri06023‡Ì…R…s†[

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

Transcription:

1413 2005 36-44 36 MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [2] % 1 ( ) *yukawa@ap.t.u-tokyo.ac.jp ( )

37 [9] Lennard-Jones Lennard-Jones [5, 3, 4] Lennard-Jones [6, 7, 8] 3 $N$ $\phi(r)$ Lennard-Jones 12-6 $\phi(r)=4\epsilon\{(\frac{\sigma}{r})^{12}-(\frac{\sigma}{r})^{6}\}$ : (2) $m_{i}$ $m_{magma}=1$ $m_{gas}=$ 2 21 $\mathcal{h}=\sum_{i=1}^{n}\frac{\mathrm{p}_{i}^{2}}{2m_{i}}+\frac{1}{2}\sum_{i,j(i\neq j)}^{n}\alpha_{i}\alpha_{j}\phi( \mathrm{q}_{i}-\mathrm{q}_{j} )-$ $/\sigma^{3}$ ( ) $\sigma\sqrt{m_{magma}/\epsilon}\text{ }$ $\epsilon/\sigma^{3}$. $(1)$ $0\cdot 1\cross m_{magma}$ $\sigma$ \epsilon 1 Boltzmann 1 $k_{b}$

38 $\alpha_{i}$ 1 0.1 100 $\mathrm{p}_{i},$ $\mathrm{q}i$ $\dot{\mathrm{q}}_{i}=\frac{\partial \mathcal{h}}{\partial \mathrm{p}_{i}}$ (3) $\dot{\mathrm{p}}_{i}=-\frac{\partial \mathcal{h}}{\partial \mathrm{q}_{i}}-\zeta \mathrm{p}_{i}$ (4) $\dot{\zeta}=\frac{1}{\tau}(\sum_{i\in A}\frac{\mathrm{p}_{i}^{2}}{2m_{i}}-\frac{3}{2}N_{A}T_{A})$ (5) 2.2 1: ( ) $L_{x}\cross L_{y}\cross L_{z^{\text{ }}}L_{i}$ $x,$ $y$, $\sum_{i\in A}$ $N_{A},$ $T_{A}$ $\tau$ ( 3 3.1 ( 1) Lennard-Jones - Hoover 1 [10, 11, 12] $\beta(z)$ \rho (z)

$\beta$ 39 $\rho(z)=\frac{\sum_{i\in z}1}{l_{x}l_{y}}$ (6) $\Pi_{\alpha \mathcal{b}}(z)=\frac{1}{l_{x}l_{y}}\sum_{i\in z}\frac{(\mathrm{p}_{i})_{\alpha}(\mathrm{p}_{i})_{\beta}}{m_{i}}$ $+ \frac{1}{2l_{x}l_{y}}$ (7) $\sum_{or,j\in z,(i<j)}f_{\alpha}^{i,\mathrm{j}}q_{\beta}^{i,j}i\in z$ $\sum_{i\in z}$ 2 $\alpha,$ $i$ $x,$ $y$ ) (pi) \mbox{\boldmath $\xi$}.\dashv $a$ $j$ $\alpha$ $i$ $\mathrm{q}_{\beta}^{i,j}$ $\beta$ $i$ $j$ (a) 2 $xy$ 2: ( $L_{x}=40,$ $L_{y}=40,$ $L_{z}=752$ ) 57600 118400 0 0 $40\cross 40\cross 40$ 57600 6400 2 $\mathrm{x}40\cross 704$ 40 112000 08 1 120 (b) (x)

40 20 4: $t=170$ 40 [14] 40 3 170 4 ( ) ( )1 40 32 ( 4) 3: $t=40$ [14] 1 web [14]

$\rho$ 3.3 $\gamma_{m}$ $\rho,$ $w,p_{g},$ $T$ Woods (1995) $\mathrm{s}$ [6] Woods ) 1/ Woods Woods $\frac{\partial\rho}{\partial t}+w\frac{\partial\rho}{\partial z}=-\rho\frac{\partial\rho}{\partial z}$ (8) $\frac{\partial w}{\partial t}+w\frac{\partial w}{\partial z}=-\frac{1}{\rho}\frac{\partial p_{g}}{\partial z}$ (9) $\frac{1-n}{\rho\iota}+\frac{nrt}{p_{g}}=\frac{1}{\rho}$ (10) $p_{g}( \frac{\phi}{\rho})^{\gamma_{m}}=const$ (11) $t,$ $t$ $w$ $p_{g}$ Woods At (13) ($w$ $\int^{\rho}\frac{a(\rho )}{\rho},d\rho )=0$ $\rho\iota$ $n$ $a(\rho)$ $R$ $T$ $\{\frac{\partial}{\partial t}+(w\pm a(\rho))\frac{\partial}{\partial z}\}$ $a^{2}(\rho)=\gamma_{m}p_{g}/(\rho\phi)$ Woods $n$ $\rho\iota$ $w\pm a$ $w \pm\int^{\rho}\frac{a(\rho )}{\rho},d\rho $ 4 $[13]_{\text{ }}$ ( ) $\phi$ Woods 5 $\underline{nrt}$ $(\mathrm{v}(z))_{z}$ T(z) (12) $\tilde{\rho}(z)$ (z) $x$ $\phi=\frac{p_{g}}{\frac{nrt}{p_{g}}+\frac{1-n}{\rho_{l}}}=\frac{1}{1+\frac{1-n}{n}\frac{p_{g}}{\rho_{l}rt}}$ (7)

42 $\mathrm{v}(z)$ $\mathrm{v}(z)=\frac{\sum_{i\in z}\mathrm{p}_{i}/m_{i}}{\sum_{i\in}\sim 1}$, (14) $T(z)= \frac{1}{3}\frac{1}{\sum_{i\in z}1}\sum_{i\in z}m_{i} \mathrm{v}_{i}-\mathrm{v}(z) ^{2}$ (15) $L_{x}=L_{y}=$ $40,$ $L_{\approx}=848$ 40 $\mathrm{x}40\cross 80$ 1 10% 5: (z) (x) $t=6$ 1/5 5 $t=6$ $z=80$ $z=848$, $L_{x}=40,$ $L_{y}=40,$ $L_{z}=848$ $z=200$ $40\cross 40\cross 80$ T=2 $T=0.8$ $\lceil \mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}$ Equilibrium $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}\rfloor$ 100

43 5 (1) (2) ( ) $\text{ }$ (3) ( ) $\backslash$ (4) (5) (3) (3) (3) (4) (2) 4 $-\wedge$ 1/4

$\mathrm{t}\mathrm{a}\mathrm{l}$ determination,. \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}$ 44 [1] $\lceil 2004$ [2] 3 2003 [3] M. Ichihara, D. Rittel, and B. Sturtevant: Fragmentation of a porous viscoelastic material: Implications to magma fragmentation, J. Geophys.. 107(Bl0), 2229, ${\rm Res}$ doi:10.1029/2001jb000591, (2002). [4] O. Spieler, D. B. Dingwell, and M. Alidibirov: Magma fragmentation speed: an experimen- J. Volcanol. Geothem. ${\rm Res}$. $129,109-123,$ $(2004)$. $\mathrm{s}.$ [5] B. Cagnoli, A. Barmin, O. Melnik, R. J. Sparks: Depressurization of fine powders in a shock tube and dynamics of ffagmented magma in volcanic conduits, Eanh Planet. Sci. Lett. $204,101-113,$ $(2002)$. $\mathrm{w}.$ [6] A. Woods: A model of vulcanian explosions, Nucl. $Eng.$ Design, 155, 345-357, (1995). [7] 0. Melnik: Dynamics of two phase conduit flow of high-viscosity gas-saturated magma: large variations of sustained explosive eruption intensity, Bull. Volcanol. 62, 153-170, (2000). [8] O. Melnik and R. S. J. Sparks: Nonlinear dynamics of lava dome extrusion, Nature $402$, 37$\text{ }$41, (1999). [9] T. Ishiwata, T. Murakami, S. Yukawa, and N. $\mathrm{i}\mathrm{t}\mathrm{o}$: Particle Dynamics Simulations of the Navier-Stokes Flow with Hard Disks. Int.. $J$ $\mathrm{c}$ Mod. Phys. (2004) [10] S. Nos\ e: A molecular-dynamics method for simulations in the canonical ensemble, $Mol$. Phys. 52, 255, (1984). [11] S. Nos\ e: A unified formulation of the constant temperature molecular-dynamics meth- $\mathrm{o}\mathrm{d}\mathrm{s}$, J. Chern. Phys. 81, 511, (1984). $\mathrm{w}$ [12] G. Hoover: Canonical dynamics: Equilibrium distributions, Phys. $\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\triangleright Rev. $\mathrm{a}31,1695,$ $(1985)$. [13] 1994 [14] web http: $//\mathrm{b}\mathrm{o}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{r}.\mathrm{t}.$u-tokyo.ac.j $\mathrm{p}/\text{ }\mathrm{y}\mathrm{u}\mathrm{k}/\mathrm{v}\mathrm{o}\mathrm{l}\mathrm{c}\mathrm{a}\mathrm{n}\mathrm{o}/$