Similar documents


1272 CHEMOTHERAPY MAR. 1975

Fig.1 Chemical structure of BAY o 9867


CHEMOTHERAPY SEPT. 1970

CHEMOTHERAPY NOV S. aureus, S. epidermidis, E. coli, K. pgeumoniae, E. cloacae, S. marcescens, P. mirabilis, Proteus, P. aeruginosa Inoculum siz

Fig. 1 Chemical structure of DL-8280

VOL.27 S-3 CHEMO THERAPY mido)-3-[[[1- (2-dimethylaminoethyl)-1H-tetrazol-5-yl] -thio] methyl]-ceph-3-em-4-carboxylic acid dihydro- S. aureus 209-P JC

CHEMOTHERAPY Proteus mirabilis GN-79 Escherichia coli No. 35 Proteus vulgaris GN-76 Pseudomonas aeruginosa No. 11 Escherichia coli ML-1410 RGN-823 Kle

988 CHEMOTHERAPY NOV. 1971

CHEMOTHERAPY JUNE 1987 Table1 Media used *BHIB, brain heart infusion broth (Difco); /3 -NAD, S -nicotinamidoadeninedinucleotide (Sigma Chemical Co.);

VOL. 23 NO. 3 CHEMOTHERAPY 1067 Table 2 Sensitivity of gram positive cocci isolated from various diagnostic materials Table 3 Sensitivity of gram nega

VOL.32 S-7 CHEMOTHERAPY Table 1 MIC of standard strains of CTRX Fig. 2 Cumulative curves of MIC S. aureus (26 strains )

CHEMOTHERAPY APR Fig. 1 Chemical structure of cefotetan (CTT, YM09330)

epidermidis, Enterococcus faecalis, Enterococcus Klebsiella pneumoniae, Proteus mirabilis, indolepositive Proteus spp., Enterobacter spp., Serratia

CHEMOTHERAPY APRIL 1992 Acinetobacter calcoaceticus Staphylococcus aureus, Escherichia coli P. aeruginosa E. eoli, Klebsiella pneumoniae Serratia marc



CHEMOTHERAPY JUN Citrobacter freundii 27, Enterobacter aerogenes 26, Enterobacter cloacae 27, Proteus rettgeri 7, Proteus inconstans 20, Proteus

Staphylococcus sp. K.pneumoniae P.mirabilis C.freundii E. cloacae Serratia sp. P. aeruginosa ml, Enterococcus avium >100ƒÊg/ml

CHEMOTHERAPY JUNE 1986

CHEMOTHERAPY Methicillin-resistant S.aureus(MRSA) coccus epidermidis 105 Streptococcus pyogenes E.faecali senterococcus avium Enterococcus faecium Str



Clostridium difficile ciprofloxacin, ofloxacin, norfloxacin Bifidobacterium Lactobacillus Lactobacillus Bacteroides fragilis B. fragilis C. difficile

CHEMOTHERAPY

CHEMOTHERAPY DEC Table 1 Antibacterial spectra of T-1982, CTT, CMZ, CTX, CPZ and CEZ 106 CFU/ml Note: P; Peptococcus, S; Streptococcus, G; Gaffk

VOL. 33 S-5 CHEMO THERAPY Fig. 1 Chemical structure of HAPA-B 1-N-[ (2 S)-3-Amino-2-hydroxypropiony1]-4- O-(6-amino-6 - deoxy-ƒ -D- glucopyranosyl) -6

Key words: Disinfectants, Gram negative rods, Bactericidal effect P. aeruginosa 1, P. fluorescens 20 P. putida 179, P. cepacia 216 P. maltophilia 227,

CHEMOTHERAPY FEB Table 1. Activity of cefpirome and others against clinical isolates

VOL.30 S-1 CHEMOTHERAPY Table 1 Antibacterial activity of CTT against standard strains Table 2 Antibacterial activity of CTT against standard strains

CHEMOTHERAPY Table 1 Urinary excretion of mezlocillin Fig. 4 Urinary excretion of mezlocillin Fig. 3 Blood levels of mezlocillin


Table 1. Antibacterial activitiy of grepafloxacin and other antibiotics against clinical isolates

Fig. 1 Chemical structure of KW-1070

coccus aureus Corynebacterium sp, Haemophilus parainfluenzae Klebsiella pneumoniae Pseudornonas aeruginosa Pseudomonas sp., Xanthomonas maltophilia, F

Key Words: Klebsiella pneumoniae, CEP-AIS, MIC, "MBC", MIC of drugs in combination



CHEMOTHERAPY aureus 0.10, Enterococcus faecalis 3.13, Escherichia coli 0.20, Klebsiella pneumoniae, Enterobacter spp., Serratia marcescens 0.78, Prote

2108 CHEMOTHERAPY SEPT Table 1 Antimicrobial spectrum Fig. 1

VOL.47 NO.5 Table 1. Susceptibility distribution of Ĉ- lactams against clinical isolates of MRSA MRSA: rnethicillin- resistant Staphylococcus aureus

VOL. 23 NO. 3 CHEMOTHERAPY 1379 Table 1 Susceptibility of clinical isolated strains to Tobramycin

CHEMOTHERAPY Table 1 Clinical effect of Sultamicillin


VOL.42 S-1

VOL.48 NO.7 lase negative staphylococci, Escherichia coli, Klebsiella spp., Citrobacter freundii, Enterobacter spp., indole-positive Proteus, Serratia


Fig.2. Sensitivity distribution of clinical isolates of S. epidermidis (24 strains, 106 CFU/ml) Staphylococcus aureus Staphylococcus epider- midis Ent


VOL. 20 NO. 5 CHEMOTHERAPY Methoxy-4-sulfanilamidopyrimidine (OS-3376) Sulfadimethoxine (SDM) Table 1. In vitro antibacterial activities of OS-3

Table 1. Antibacterial spectrum SBT ABPC ABPC CPZ : sulbactamiampicillin : ampicillin : cefoperazone




CHEMOTHERAPY JUNE 1993 Table 1. Background of patients in pharmacokinetic study

CHEMOTHERAPY APR. 1979

CHEMOTHERAPY Fig. 1 Chemical structure of CXM-AX

CHEMO THE RAPY OCT. 1994

Table1MIC of BAY o 9867 against standard strains

CHEMOTHERAPY

VOL.27 S-5 CHEMOTHERAPY Table 1 Clinical evaluations of cefamandole on UTI (1) Benign prostatic hypertrophy (2) Transurethral resection of bladder tum

CHEMOTHERAPY MAY. 1988

Key words: E. coli O 157: H7, fosfomycin, verotoxin, mouse infection

VOL. 21 NO. 2 CHEMOTHERAPY 137

CHEMOTHERAPY OCT Fig. 1 Chemical structure of CVA-K

Dec. THE JAPANESE JOURNAL OF ANTIBIOTICS XXXVII (45)


CHEMOTHERAPY



VOL. 40 S- 1 Table 1. Susceptibility of methicillin-resistant Staphylococcus aureus to meropenem Table 2. Coagulase typing of methicillin-resistant St

CHEMOTHERAPY APR Fig. 2 The inactivation of aminoglycoside antibiotics by PC-904 Fig. 3 Serum concentration of PC-904 (1) Fig. 4 Urinary recover



CHEMOTHERAPY Fig. 1 Body weight changes of pregnant mice treated orally with AM- 715 Day of sestation

Key words: Surfactant, Tween, Legionella


THE JAPANESE JOURNAL OF ANTIBIOTICS 48-8 Enterococcus avium 5Š, Corynebacterium xerosis 10Š, Corynebacterium pseudodiphtheriticum 10Š, Corynebacterium

VOL. 34 S-2 CHEMOTH8RAPY 913


pneumoniae 30, C. freundii 32, E. aerogenes 27, E. cloacae 32, P. mirabilis 31, P. vulgaris 34, M. morganii 32, S. marcescens 31, H. influenzae 27, P.

VOL.35 S-2 CHEMOTHERAPY Table 1 Sex and age distribution Table 2 Applications of treatment with carumonam Table 3 Concentration of carumonam in human


co Kanamycin (KM), Streptomycin (SM), Fradiomycin Table 2. Comparison of antibacterial activity of 3', 4'-dideoxykanamycin B with that of other antibi

Jan THE JAPANESE JOURNAL OF ANTIBIOTICS XL-1 Table 1. Outline of administering doses, routes and sampling times *: 4 ml/hr/kg Bacillus subtilis

THE JAPANESE JOURNAL OF ANTIBIOTICS XXII-4 Aug. viable cell number was counted, the number decreased remarkably, then increasedrapidly number as the c


Streptococcus pneumoniae,streptococcus pyogenes,streptococcus agalactiae,neisseria gonorrhoeae,h.influenzae,moraxella subgenus Branhamella catarrharis

VOL. 43 NO. 4

日本化学療法学会雑誌第53巻第S-3号

VOL. 37 NO. 3 Key words: Drug allergy, LMIT, Penams, Cephems, Cross-reactivity


Fig. 1 Chemical structure of TE-031 Code number: TE-031 Chemical name: (-) (3R, 4S, 5S, 6R, 7R, 9R, 11R, 12R, 13S, 14R)-4-[(2, 6-dideoxy-3-C-methyl-3-


dihydrostreptomycin(sm), sulfanilamide(sa), kanamycin(km), paromomycin(prm), fradiomycin(frm), ampicillin(apc), cephaloridine (CER), nalidixic acid(na


Key words : 7432-S, Oral cephem, Urinary tract infection Fig. 1. Chemical structure of 7432-S.

Table 1. Concentration of ritipenem in plasma, gallbladder tissue and bile after ritipenem acoxil administration (200 mg t.i.d., 3 days) N.D.: not det

Transcription:

2 CHEMOTHERAPY JAN. 1976

VOL. 24 NO. 1 CHEMOTHERAPY 3 Table 1 Antibacterial spectra of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin

4 CHEMOTHERAPY JAN. 1976 Fig. 1 In vitro activity of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin against clinically isolated bacterial strains

VOL 24 NO. 1 CHEMOTHERAPY 5 Table 2 Effect of inoculum size on antibacterial activity of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin Viable cell counts of inoculum suspension Inoculum size : One loopful of bacterial suspension Medium : Trypticase soy agar

6 CHEMOTHERAPY JAN. 1976 Table 3 Effect of medium ph on antibacterial activity of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin Fig. 2 Patterns of development of resistance of Staph. aureus 209 P to Cephacetrile, Cephalothin, Cephaloridine and Cefazolin Fig. 3 Patterns of development of resistance of E. coli NIHJ JC-1 to Cephacetrile, Cephalothin, Cephaloridine and Cefazolin

VOL. 24 NO. 1 CHEMOTHERAPY 7 Table 4 Effect of horse serum concentration in medium on antibacterial activity of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin Table 5 Antibacterial activity of Cephacetrile on several agar medium

Table 6 Cross resistance among Cephacetrile, Cephalothin, Cephaloridine and Cefazolin Fig. 4 Bactericidal effect of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin on Staph. aureus 209 P

Fig. 5 Bactericidal effect of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin on E. coli NIHJ JC-1 Fig. 6 Bacteriolytic effect of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin on Staph. aureus 209 P Fig. 7 Bacteriolytic effect of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin on E. coli NIHJ JC-1

Table 7 Effect of ph on antibacterial activity of Cephacetrile at 100 Ž Inoculum size : One loopful of bacterial suspension (108/ml) Medium : Trypticase soy agar Table 8 Effect of ph on antibacterial activity of Cephacetrile at 37 Ž Table 9 Effect of ph on antibacterial activity of Cephacetrile at 4 Ž Inoculum size : One loopful of bacterial suspension (108/ml) Medium : Trypticase soy agar

Table 10 Protective effect of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin on Staph. aureus 308 A-1 infection in CF1/H mice Note Five mice of each group were injected intraperitoneally with 0.5 ml of bacterial suspension in 5 % mucin. Cephalosporin was administered as a single dose immediately after challenge.

Table 11 Protective effect of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin on Strept. pyogenes E-14 infection in CF1/H mice Note: Five mice of each group were injected intraperitoneally with 0. 5 ml of bacterial suspension in 5 % mucin. Cephalosporin was administered as a single dose immediately after challenge. Table 12 Protective effect of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin on Strept. pneumoniae type I infection in CF1/H mice Note : Five mice of each group were injected intraperitoneally with 0. 5 ml of bacterial suspension in TSB. Cephalosporin was administered as twice doses 0 and 4 hours after challenge. Table 13 Protective effect of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin on E. coli 0-111 infection in CF1/H mice Note : Five mice of each group were injected intraperitoneally with 0.5 ml of 5 % mucin which contained 1/10 volume of suspension of test organism. Cephalosporin was administered as a single dose immediately after challenge.

Table 14 Protective effect of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin on Klebsiella pneumoniae infection in CF1/H mice Note : Five mice of each group were injected intraperitoneally with 0. 5 ml of bacterial suspension in 5% mucin. Cephalosporin was administered as a single dose inmmediately after challenge. Table 15 Protective effect of Cephacetrile, Cephalothin, Cephaloridine and Cefazolin on Proteus mirabilis IFO 3849 infection in CF1/H mice Note : Five mice of each group were injected intraperitoneally with 0.5 ml of bacterial suspension in 5 % mucin. Cephalosporin was administered as a single dose immediately after challenge.

6) BARBEN, M. & P. M. WATERWORTH : Penicillinase-resistant penicillins and cephalosporins. Brit. Med. J. 2: 344 `349, 1964 7) MUGGLETON, P. W.; C. H. O'CALLAGHAN & W. K. STEVENS : Laboratory evaluation of a new antibiotic-cephaloridine (cephanon). Brit. Med. J. 2 : 1234 `1237, 1964 8) STEWART, G. T. & R. J. HOLT : Laboratory and clinical results with cephaloridine. Lancet, II: 1305-4309, 1964 9) KARIYONE, K.; H. HARADA, M. KURITA & T. TAKANO : Cefazolin, a new semisynthetic cephalosporin antibiotic. I. Synthesis and chemical properties of cephazolin. J. Antibiotics 23: 131 `136, 1970 10) NISHIDA, M.; T. MATSUBARA, T. MURAKAWA, Y. MINE & Y. YOKOTA : Cefazolin, a new 1) CHAUVETTE, R. R.; E. H. FLYNN, B. G. JACK- SON, E. R. LAVAGNINO, R. B. MORIN, R. A. MUELLER, R. P. PIOCK, R. W. ROESKE, C. W. RYAN, J. L. SPENCER & E. VAN HEYNINGEN : Chemistry of cephalosporin antibiotics. II. Preparation of a new class of antibiotics and the relation of structure to activity. J. Am. Chem. Soc. 84 : 3401 `3402, 1962 2) BONIECE, W. B.; W. E. WICK, D. H. HOLMES & C. E, REDMAN : In vitro and in vivo laboratory evaluation of cephalothin, a new broad spectrum antibiotic. J. Bact. 84 : 1292-1296, 1962 3) Godzeski, C. W.; G. Brier & D. E. PAVEY : Cephalothin, a new cephalosporin with a broad antibacterial spectrum. Appl, Microbiol. 11 : 122 `127, 1963 4) CHANG, T. W. & L. Weinstein : In vitro biological activity of cephalothin. J. Bact. 85: 1022 `1027, 1963 semisynthetic cephalosporin antibiotic. II. In vitro and in vivo antimicrobial activity. J. Antibiotics 23 : 137 `148, 1970 11) SILVERBLATT, F,; W. O. HARRISON & M. TURCK : Nephrotoxicity of cefazolin antibiotics in experimental animals. J. Infect. Dis. 128 : S 367 `S 372, 1973 12) KNUSEL, F.; E. A. KONOPKA, J. GELZER & A. ROSSELET : Antimicrobial studies in viaro with CIBA 36, 278-Ba, a new cephalosporin derivative. Antimicr. Agents & Chemoth. -1970 : 140 `449, 1971 13) KRADOLFER, F.; W. SACKMANN, O. Zak, H. BRUNNER, R. HESS, E. A. KONOPKA & J. GELZER : CIBA 36, 278-Ba : Chemotherapy and toxicology in laboratory animals. Antimicr. Agents & Chemoth. -1970:150 `455, 1971 14) REED, L. J. & H. MUENCH, : A simple method of estimating fifty per cent endopoints. Am. J. Hyg. 27 : 493, 1938

ANTIBACTERIAL ACTIVITY OF CEPHACETRILE KANJI TSUCHIYA, TAKESHI NISHI and TOKIKO OISHI Central Research Division, Takeda Chemical Industries, Ltd., Osaka, Japan SACHIKO GOTO and YASUKO KANEKO Department of Microbiology, Toho University of Medicine, Tokyo, Japan Cephacetrile (CEC) shows in vitro antibacterial activity against gram-positive and gram-negative bacteria as well as Cephalothin(CET), Cephaloridine (CER) and Cefazolin (CEZ). CEC exhibits stronger activity against clinical isolates of Proteus mirabilis than that of other cephalosporins. Several antibacterial features of CEC such as the influence of inoculum size, medium ph, effect of addition of horse serum, development of resistance, cross resistance, and bactericidal and bacteriolytic activity were shown to be almost identical to those of other cephalosporins. The antibacterial activity of CEC was stable in solution at ph levels of 2 to 9, especially at ph 4. The in vivo protective activity of CEC was slightly weak than that of CEZ in mice infected intraperitoneally with certain strains of the gram-positive species, and CEC has similar activity with CET in mice infected with certain strains of the gram-negative species.