_XAFS_ichikuni

Similar documents
X線分析の進歩36 別刷

SPring8菅野印刷.PDF

untitled

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

微粒子合成化学・講義

技術会議資料


1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

untitled


ナノ粒子のサイズ・形態制御と 構造敏感型触媒プロセスへの応用

寄稿論文 規則性無機ナノ空間が創り出す新しい触媒能 | 東京化成工業

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

Table 1. Shape and smelting properties of chrome ores as delivered. Table 2. Chemical composition of chrome ores (%). Table 3. Chemical composition of

untitled

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

J. Soc. Cosmet. Chem. Jpn. 7-chome, Edogawa-ku, Tokyo 132, Japan 2.1 J. Soc. Cosmet. Chem. Japan. Vol. 31, No

PowerPoint プレゼンテーション

製紙用填料及び顔料の熱分解挙動.PDF

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

From Evans Application Notes

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

T05_Nd-Fe-B磁石.indd

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

Fig. 2 Effect of oxygen partial pressure on interfacial tensions between molten copper and fayalite slag (Fe/Si0 2=1.23) at 1473 K. Fig. s Effect or o

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

塗装深み感の要因解析

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

δδ 1 2 δ δ δ δ μ H 2.1 C 2.5 N 3.0 O 3.5 Cl 3.0 S μ

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test


52-2.indb


On the Variation of Oxygen and Alminium in Molten Steel during Pouring Practice T. Obinata et, alii. Spoon position: (A): within 100mm under nozzle (B

原著03_高橋.indd

Fig. 1. Relation between fatigue crack propagation rate and stress intensity factor range. Fig. 2. Effect of stress ratio on fatigue crack opening rat

Al-Si系粉末合金の超塑性

NOx触媒としてのCu-ZSM-5 中のCuイオンの配位構造と反応性

9) H. SCHMCLZRIED: Z. Elektrochem. 66 (l%1) p ) W. D. KINGERY et al.: J. Am. Chem. Soc., 42 (1959), p ) F. HUND: Z. Phys. Chem., 199 (195

Note; a: Pressure sensor, b: Semi-permeable membrane, c: O-ring, d: Support screen, e: Solution, f: Solvent. Fig. 2. Osmometer cell. Fig. 1. Schematic

Microsoft PowerPoint - S-17.ppt

untitled


Table 1. Main specifications of VAD plant. Fig. 2. Typical operating pattern of low alloy steel.

Fig. 1 Structure of a Sebaceous Follicle (Ref.1).


第117号(A4、E)4C/3 湯浅ほか

卒業論文はMS-Word により作成して下さい

yakugaku-kot.ppt

Fig. la PL spectra of PSL prepared on Si specimen (p = 1 k Q m) with electrochemical etching in HF solution (26wt %) under galvanostatic conditions of

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

1) Y. Kobuke, K. Hanji, K. Horiguchi, M. Asada, Y. Nakayama, J. Furukawa, J. Am. Chem. Soc., 98, 7414(1976). 2) S. Yoshida, S. Hayano, J. Memb. Sci.,


36 th IChO : - 3 ( ) , G O O D L U C K final 1

スライド 1

220 28;29) 30 35) 26;27) % 8.0% 9 36) 8) 14) 37) O O 13 2 E S % % 2 6 1fl 2fl 3fl 3 4

千葉県における温泉地の地域的展開

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

橡


放射線化学, 97, 29 (2014)

UDC : ' : '24' : '24'26' : : A Study of Condition of Pits Formation and Their Fe

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a


untitled

ヒト血漿中オキシステロールの高感度分析法



わが国のコモディティ投資信託とETF

食品工学.indb

理論懇2014

4 1 Ampère 4 2 Ampere 31

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Table 1. Chemical composition of Fe203 and SrCO3 used for experiment. Fig. 1. Process of preparion of the specimen.

Table 1 Properties of parent coals used Ebenezer, Massel Buluck ; Australia, Datong; China Table 2 Properties of Various chars CY char: Captured char

浜松医科大学紀要

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

Fig. 1 Hydrogen Uptake on Metal Supported Active Carbon Fig. 2 Temperature Programmed Desorption Spectra of Hydrogen on Ni Supported Active Carbon

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

1) T. L. Cottrel, A. J. Matheson, Trans. Farad. Soc., 58, 2336(1962). 2) E. N. Chesnokov, V. N. Panfilov, Teor. Eksp. Khimiya, 17, 699(1981). 3) M. Ko

CuおよびCu‐Sn系化合物のSn‐Pbはんだ濡れ性解析


01-表紙.ai

雇用不安時代における女性の高学歴化と結婚タイミング-JGSSデータによる検証-

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

Precisely Designed Catalysts News Letter Vol. 5 May, 2016

SPring-8_seminar_

第122号(A4、E)(4C)/3 宇野ほか

no15

54 10 hν hν ' Cd 2 CdS Y- 13 CdS ZnS PbS CdSe 35) 36) 20 TiO 2 V 2 O 5 Fe 2 O 3 37) CVD TiO 2 V 2 O ) UV 1 UV Ti 3 -O Ti 3 O 1 NO N 2

2

9 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /,, No.0,,/+,/0 (,**/) 251 * * E#ects of Microbial Transglutaminase on Melting Point and Gel property of G

Transcription:

Applied Chemistry and Biotechnology

Many elements can be a candidate for developing the active catalyst. However, there are some restrictions such as cost, abundance, etc. Platinum group metals show the higher activity toward many reactions. However, they are really precious and distributed unevenly. Base elements are relatively inexpensive and abundant. They also have the activity as catalyst. However, their activity is not high enough. 100 90 Surface atom ratio / % 80 70 60 50 40 0 1 2 3 4 Particle size / nm M. Haruta, Catal. Today, 36 (1997) 153-166. H. Tsunoyama, N. Ichikuni, H. Sakurai, T. Tsukuda, J. Am. Chem. Soc., 131 (2009) 7086-7093.

Ni metal nanocluster on alumina N. Ichikuni et al. Trans. Mater. Res. Soc. Jpn., 37 (2012) 177-180. Ni colloid Al 2 O 3 catalyst preparation Ni(OAc) 2 Al 2O 3 (Aerosil, -C) reflux H 2 673 K NaH+alcohol*/THF Ni colloid col Ni/Al 2O 3 N 2 atmosphere *alcohol Ni loading: 3 wt% P. Caubère et al. J. Organomet. Chem., 157 (1978) 125-133. OH OH OH OH 2-propanol (2-Pr) 2-butanol (2-Bu) 2-pentanol (2-Pe) 2-octanol (2-Oc) 2-decanol (2-De) OH 2-dodecanol (2-Do) H. Kitagawa, N. Ichikuni, S. Xie, T. Tsukuda, T. Hara, S. Shimazu, e-j. Surf. Sci. Nanotech., 10 (2012) 648-650. OH

Ni K-edge XANES <H2 treated at 673 K> Ni K-edge in situ XANES spectra during H2 treatment. Ni K-edge XANES spectra of Ni catalysts H2-treated at 673 K. Ni K-edge XANES <H2 treated at 673 K> catalysts ratio of Ni metal / % imp Ni/SiO2 95 col Ni/SiO2 90 imp Ni/Al2O3 25 col Ni/Al2O3 85 <H2 treated at 773 K> catalysts ratio of Ni metal / % imp Ni/SiO2 95 col Ni/SiO2 90 imp Ni/Al2O3 55 col Ni/Al2O3 85

catalyst preparation Ni(OAc) 2 Al 2O 3 (Aerosil, -C) reflux H 2 673 K NaH+alcohol*/THF Ni colloid col Ni/Al 2O 3 N 2 atmosphere *alcohol Ni loading: 3 wt% P. Caubère et al. J. Organomet. Chem., 157 (1978) 125-133. 2-pentanol(2-Pe) 2-octanol (2-Oc) 2-decanol (2-De) NaH/Ni = 9, 15, 20 alcohol/ni = 1, 3, 6, 9 effect of alkyl chain length FT Ni foil col Ni/Al 2 O 3 2-De col Ni/Al 2 O 3 2-Oc Sample CN a r b / nm Ni foil 12 0.249 col Ni/Al 2 O 3 2-De 10.3±0.2 0.247 col Ni/Al 2 O 3 2-Oc 8.4±0.3 0.248 col Ni/Al 2 O 3 2-Pe 8.9±0.2 0.247 a Coordination number of Ni-Ni1 b Coordination distance of Ni-Ni1 col Ni/Al 2 O 3 2-Pe 0 2 4 6 r / 10-1 nm FT k-range: 30-130 nm -1 2-Oc

SPring-8講習会 <産業利用に役立つXAFSによる先端材料の局所構造解析 2017> 2017/1/30 炭素鎖長の短いアルコキシド 還元剤となるNaHとの複合体形成が速い 還元速度が速い Reducing timea / min effect of alkyl chain length a溶液が黒色化するま での時間 炭素鎖長の長いアルコキシド 保護基としてのNiへの配位時の保護能が高い クラスターの微細保持 還元剤としての機能: 2-Pe > 2-Oc > 2-De 保護剤としての機能: 2-Pe < 2-Oc < 2-De 2-octanolが両機能を最適化 SPring-8講習会 <産業利用に役立つXAFSによる先端材料の局所構造解析 2017> 2017/1/30 TEM observation 12 Distribution / % 14 12 Distribution / % 14 10 10 8 6 4 2 0 6 4 2 1 0 2 3 4 5 Particle size / nm d = 3.2±0.8 nm CN = 10.3 col Ni/Al2O3 2-Oc NaH(15) 12 Distribution / % 2 3 4 5 Particle size / nm d = 3.0±0.8 nm CN = 8.9 col Ni/Al2O3 2-Oc THF(10) 14 14 12 10 10 8 6 4 2 0 col Ni/Al2O3 2-Pe 1 Distribution / % col Ni/Al2O3 2-De 8 8 6 4 2 1 2 3 4 5 Particle size / nm d = 2.9±0.7 nm CN = 8.0 0 1 2 3 4 5 Particle size / nm d = 2.7±0.7 nm CN = 6.7

water gas shift reaction 8.0 < CN CN < 8.0 CO: 5 Torr, H 2 O: 5 Torr, He: 40 Torr, T = 523 K reaction order CO + H 2 O CO 2 + H 2 r = k [CO] x [H 2 O] y H 2 O 0.5 0.4 0.4 0.2 CO terrace site ratio 0.3 0.2 0.1 order for CO 0.0-0.2-0.4-0.6 0.0 7 8 9 10 0.0 0.1 0.2 0.3 0.4 0.5 CN terrace site ratio H 2 O CO CO CO

Ratio of distorted particles (rdp*) col Ni/Al 2 O 3 2-De rdp = 6.3 % d = 3.2±0.8 nm CN = 10.3 col Ni/Al 2 O 3 2-Pe col Ni/Al 2 O 3 2-Oc NaH(15) rdp = 9.6 % d = 3.0±0.8 nm CN = 8.9 rdp = 10.4 % d = 2.9±0.7 nm CN = 8.0 col Ni/Al 2 O 3 2-Oc THF(10) rdp = 10.6 % d = 2.7±0.7 nm CN = 6.7 rdp: Number of the distorted particles/number of all particles observed in HAADF STEM images. The reason of volcano-shape size dependence K.B.Kester, E.Zagli, J.L.Falconer, Appl.Catal. 22 (1986) 311-319. col Ni/Al 2 O 3 2-Oc THF(10) col Ni/Al 2 O 3 2-Pe rdp = 9.6 % d = 3.0±0.8 nm Ea = 58 kj mol -1 rdp = 10.6 % d = 2.7±0.7 nm Ea = 82 kj mol -1

Size regulated Ni nanocluster was preparaed on alumina support. Ni nanocluster showed the volcano shape size dependence on WGSR H. Kitagawa, N. Ichikuni, H. Okuno, T. Hara, S. Shimazu., Appl. Catal. A, 478 (2014) 66-70.

Ni foil normalized absorption NiO imp Ni(N)/SiO 2 imp Ni(Ac)/SiO 2 col Ni(A)/SiO 2 col Ni(C)/SiO 2 col Ni(N)/SiO 2 col Ni(Ac)/SiO 2 N. Ichikuni, O. Tsuchida, J. Naganuma, T. Hara, H. Tsunoyama, T. Tsukuda, S. Shimazu, Trans. Mater. Res. Soc. Jpn., 37 (2012) 177-180. 8300 8320 8340 8360 8380 photon energy / ev 8400 normalized absorption Co(OH)2 Co3O4 oxidation 673 K oxidation 573 K oxidation 453 K w/o pretreatment FT 7700 7720 7740 photon energy / ev 7760 0 1 2 3 4 r / 0.1 nm 5 6 N. Ichikuni, T. Fujii, T. Hara, S. Shimazu, PF Activity Report 2013 #31(2014) B, 93.

Co(OAc) 2 SiO 2 NaH 2-Butanol/ THF Co colloid N 2 atmosphere col CoO x /SiO 2 Co: 3 wt%, 5wt% Na + O - Na + O - Na+ O - O - Na + n=alcoholate/co=3, 4, 9 col CoO x /SiO 2 (n) 10 5 col CoOx/SiO 2 (3) col CoOx/SiO 2 (4) col CoOx/SiO 2 (9) col CoOx/SiO 2 (3) col CoOx/SiO 2 (4) col CoOx/SiO 2 (9) k 3 χ(k) 0 FT -5-10 2 4 6 8 10 12 14 0.0 0.1 0.2 0.3 0.4 0.5 0.6 k / 10 nm -1 r / nm Table Curve-fitting result of Co-Co (Oh) coordination for col CoOx/SiO2 catalyst CN r (nm) de (ev) DW (nm) col CoOx/SiO2 (3) 3.8±0.4 0.285±0.001-0.12±0.87 0.0078±0.0010 col CoOx/SiO2 (4) 3.4±0.4 0.285±0.001-0.76±0.96 0.0078±0.0010 col CoOx/SiO2 (9) 2.6±0.5 0.285±0.001-0.64±1.50 0.0082±0.0015 FT k-range: 30-140 nm -1, Co-(O)-Co parameter: Co3O4 alcoholate/co

XPS spectra of 5 wt% col CoO x /SiO 2 Co 3+ /(Co 3+ +Co 2+ ) (%) pretreatment temp. (K) col CoO x /SiO 2 (3) col CoO x /SiO 2 (4) col CoO x /SiO 2 (9) 573 67.8 66.8 66.6 573 673 62.9 60.3 47.7 573 673 773 46.6 51.9 39.6 Co 2p 3/2 Co 2p 1/2 Co 3+ Co 2+ Co 2p 1/2 Co 2p 3/2 Co 2+ Co 3+ Co 2p 1/2 Co 2p 3/2 Co 3+ Co 2+ Intensity / a.u. Intensity / a.u. Intensity / a.u. 573 K 573-673 K 810 800 790 780 Binding energy / ev 810 800 790 780 Binding energy / ev 810 800 790 780 Binding energy / ev 573-673 -773 K Co 3+ /(Co 3+ +Co 2+ ) (%) pretreatment temp. (K) col CoO x /SiO 2 (3) col CoO x /SiO 2 (4) col CoO x /SiO 2 (9) 573 67.8 66.8 66.6 573 673 62.9 60.3 47.7 573 673, evac at 273 66.2 66.9

Initial rate of CO oxidation on 5 wt% CoO x /SiO 2 catalyst catalyst r0 (10-5 mol min -1 gcat -1 ) col CoO x /SiO 2 (3) 13.7 col CoO x /SiO 2 (4) 13.6 *col CoO x /SiO 2 (4) *6.3 col CoO x /SiO 2 (9) 5.8 *col CoO x /SiO 2 (9) *1.1 imp CoO x /SiO 2 4.4 bulk CoO n. r. P0(CO)=10 Torr, P0(O2)=5 Torr. 273 K. Cat.: 0.050 g. Pretreatment: oxidation at 573 and 673 K, followed by evacuation at 273 K. *Pretreatment: oxidation at 573 and 673 K, followed by evacuation at 673 K. Co 3 O 4 (110)-type A Co 3 O 4 (110)-type B H.-F. Wang et al, J. Catal., 296 (2012) 110-119. Small Co oxide nanocluster was preparaed on silica support. nanocluster catalyst: 4.8 nm, impregnation catalyst 17 nm. Lowering the desorption temperature prevented the surface reduction from Co 3+ to Co 2+ and showed the activity for CO oxidation reaction. Desorption temperature of surface oxygen became lowered as Co oxide nanocluster size diminished.

M. Haruta, Faraday Discuss, 152 (2011) 11-32.

Catalyst Preparation NiO(precursor)/support-T precursor: amm: [Ni(NH 3 ) 6 ] 2+ in ammonia solution ace: Ni(acac) 2 in MeOH nit: Ni(NO 3 ) 2 aq support: SiO 2 A.C.: activated carbon calcination temperature: 573, 673 or 773 K loading amount: 5 wt% Catalytic reaction Catalyst CN a (Ni-Ni) Yield b (%) NiO(amm)/SiO 2 -RT 7.3±1.2 51 NiO(amm)/SiO 2-573 7.4±1.2 28 NiO(amm)/SiO 2-773 8.0±1.3 4.5 NiO(amm)/A.C.-573 5.0±0.8 17 NiO(ace)/SiO 2-673 7.0±1.2 7.8 NiO(nit)/SiO 2-673 12.3±2.1 1.9 a Coordination number (CN) of Ni-Ni, determined by curve fitting analysis of Ni K-edge EXAFS for NiO catalysts. b Determined by gas chromatography using an internal standard method.

Ni K-edge XANES Ni-Ni Catalyst CN a r b (nm) de c (ev) DW d (nm) R e NiO(amm)/A.C.-573 5.0±0.8 0.300±0.001 1.2±1.5 0.0083 0.132 NiO(ace)/SiO 2-673 7.0±1.2 0.298±0.001-1.9±1.6 0.0095 0.377 NiO(nit)/SiO 2-673 12.3±2.1 0.295±0.001 0.5±1.7 0.0060 0.090 bulk NiO (model) 12 0.295 0 0.006 - a Coordination number of Ni-Ni, b bond distance, c difference between model compound and experimental threshold energies, d Debye-Waller factor, e R-factor. FT range: 30-140 nm -1. NiO Ni-Ni

TEM NiO(ace)/SiO 2-673) : 1.0 nm : 0.24 nm Catalyst CN NiO(amm)/A.C.-573 5.0±0.8 NiO(ace)/SiO 2-673 7.0±1.2 1.0 nm NiO NiO(nit)/SiO 2-673 12.3±2.1 bulk NiO 12 Ni K-edge EXAFS NiO

NiO(amm)/SiO 2 -T Ni-O-Si T. Lehmann et al., Micro. Meso. Mater., 151 (2012) 113-125. (a) SiO 2 (b) [Ni(NH 3 ) 6 ] 2+ NiO Ni-O-Si SiO 2 (c) Ni-O-Si Ni K-edge EXAFS Nickel silicate

Catalytic reaction Ni-O-Si Catalyst NiO ratio (%) Ni-O-Si ratio (%) Yield (%) NiO(amm)/SiO 2 -RT 37 63 51 NiO(amm)/SiO 2-573 48 52 28 NiO(amm)/SiO 2-773 57 43 4.5 NiO(amm)/SiO 2 -RT NiO(amm)/SiO 2-573 NiO(amm)/SiO 2-773 SiO 2 SiO 2 SiO 2 NiO Ni-O-Si