Nosé Hoover 1.2 ( 1) (a) (b) 1:

Similar documents
構造と連続体の力学基礎

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

Gmech08.dvi

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

GJG160842_O.QXD

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


ver.1 / c /(13)

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

chap1.dvi

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

B ver B

「国債の金利推定モデルに関する研究会」報告書

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

meiji_resume_1.PDF

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? *


: , 2.0, 3.0, 2.0, (%) ( 2.


C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

30

SFGÇÃÉXÉyÉNÉgÉãå`.pdf


nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

K E N Z OU

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a


master.dvi

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

( ) ( )

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

note1.dvi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

OHP.dvi

数学演習:微分方程式

Untitled

II 1 II 2012 II Gauss-Bonnet II

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Untitled

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

TOP URL 1

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

all.dvi

DVIOUT-fujin

Note.tex 2008/09/19( )

dynamics-solution2.dvi


1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

05Mar2001_tune.dvi

高等学校学習指導要領

高等学校学習指導要領


r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t


基礎数学I

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T



Maxwell

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

2000年度『数学展望 I』講義録

Gmech08.dvi

Mott散乱によるParity対称性の破れを検証


IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

B

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.


x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

2,200 WEB * Ξ ( ) η ( ) DC 1.5 i

A

85 4

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Transcription:

1 watanabe@cc.u-tokyo.ac.jp 1 1.1 Nosé Hoover 1. ( 1) (a) (b) 1:

T ( f(p x, p y, p z ) exp p x + p y + p ) z (1) mk B T p x p y p = = z = 1 m m m k BT () k B T = 1.3 0.04 0.03 0.0 0.01 0-5 -4-3 - -1 0 1 3 4 5 Momentum : exp( p /(k B T )) T = 1.3 1.3 Γ = (q 1, q,, p 1, p, ) fdγ = 1 (3) f(γ) dγ dq 1 dq dp 1 dp f A A A Af dγ (4)

3 S S k B ln f = k B f ln fdγ (5) H(Γ) 1 H = E δs = 0 f = 1 Ω = δ(h E)dΓ (6) Ω H = E 0 H = U (7) β I = βu S (8) δi = 0 f f = Z 1 exp( βh) Z = exp( βh)dγ (9) f 0 exp( βh) (5) (7) f (9) S U ds = βk B du (10) ds = du T (11) β β = 1 k B T (1) T (1) H H = p x + p y + p z m + V (q x, q y, q z ) H p x = p x p x m (13) 1

4 H p x = Z 1 H p x exp( βh)dγ p x p x = Z 1 p x (exp( βh)) dγ ( β) p x = 1 px exp( βh)dγ β p x = 1 β p y p z () p x = m p y = m p z = 1 m β = k BT (14) (Local Equilibrium) 1.4 p /m = k B T q H = k B T (15) q (Kinetic Temperature) (Configuration Temeprature)

5.1 (Molecular Dynamics method, MD) T H E = H T C C = E T T E E = T 0 (16) CdT (17) C(T ) Z H = ln Z β = k BT ln Z T (16) (18) ( ). (Canonical Distribution) (Time Reversiblity) (Autonomous) (18)

6 (Ergodicity) (Efficiency) ( ) L. V. Woodcock Velocity Scaling method [1] Hoover Evans (Gaussian Thermostat )[] Extended System [3] Hoover Nosé Hoover[4] Nosé Hoover Berendsen [5] Nosé Poincaré[6] Nosé Poincaré.3 Nosé Hoover Nosé Hoover H(p, q) Nosé Hoover q = H p ṗ = H ζ = 1 τ p pζ ( p H p 1 β ββ = 1/(k B T )β τ (p, q, ζ) (p, q, ζ)dγ dpdqdζ f(p, q, ζ)dγ ) (19)

7 f f f t = divj ( ) = div Γf = (ṗf) p ( qf) q ( ζ)f ζ J Γf f f ( ṗ p + q q + ζ ) f + f ζ p ṗ + f f q + q ζ ζ = 0 ṗ q f ( ) H f ζf = p pζ p + H f q q + 1 ( τ p H p 1 ) f β ζ f = Z 1 exp [ β ( )] H + ζ τ 3 (p, q)f 0 f ζ 4 f 0 = fdζ = Z 1 0 exp( βh) f 0 (p, q) β Nosé Hoover (p, q) (p, q, ζ)f exp( β(h + ζ /(τ ))) 3 3.1 5 0 3 4 (p, q, ζ)(p, q) 5

8 H = p / + V (q) 1 { ṗ = V q q = p (0) L { ṗ = ilp 6 il = V q q = ilq p + p q (1) { p(t) = e itl p(0) q(t) = e itl q(0) (1) () (3) e itl = 1 + itl + (itl) + (4) p(0) q(0) p(t) q(t)u(t) = e ilt t tu( t) Ũ( t) { p(n t) = Ũ( t) n p(0) (5) q(n t) = Ũ( t)n q(0) Ũ( t) t U( t) L L K L U il K = p q il U = V q 6 i 1 i p (6)

9 il K q (il K ) q = il K ( p q q ) = il K p = p p q = 0 (il K ) = 0 (il U ) = 0 { e itl K = 1 + itl K e itl U = 1 + itl U (7) exp(ilt) = exp(i(l K + L U )t) exp(il K t) exp(il U t) exp(i t(l K + L U )) = exp(i tl K ) exp(i tl U ) + O( t) exp(i t(l K + L U )) = exp(i t L K) exp(i tl U ) exp(i t L K) + O( t ) 7 (Symplectic Integration) 8 H n O( t n ) 9 Ũ( t) = exp(il K t) exp(il U t) exp(il U t) exp(il K t) e i tl K = 1 + i tl K = 1 + tp q e i tl U = 1 + i tl U = 1 t V q p p p V q t q q + p t 7 1 1/ ( ) 8 9 1 (8)

10 q q + p t p p V q t q q + p t exp(i t L K) exp(i tl U ) exp(i t L K) exp(i t L U) exp(i tl K ) exp(i t L U) H Nosé Hoover ṗ = H q pζ q = H p ζ = 1 τ ( p 1 β L [ L = i p q q p pζ p + 1 ( τ p 1 ) ] β ζ pζ p ( exp pζ ) = p exp ( ζ) p p ) (9) (30) (31) q q + H t p (3) p p H t q (33) p p exp ( ζ t) (34) ζ ζ + 1 ( τ p 1 ) t (35) β

11 q q + H t (36) p p p exp ( ζ t/) (37) ζ ζ + 1 ( τ p 1 ) t (38) β p p H t (39) q ζ ζ + 1 ( τ p 1 ) t (40) β p p exp ( ζ t/) (41) q q + H p exp(i t L U) RESPA (REversible System Propagator Algorithm) [7] RESPA 3. Nosé Hoover H = 1 m t (4) p i + V (q 1, q, ) (43) i V Nosé Hoover ṗ i = V p i ζ q i q i = p i m ζ = 1 ( p ) (44) i τ m Nk BT i τ τ ( ) τ 3 Lennard-Jones N = 64000 Nosé Hoover

1 1.4 1.35 Without Thermostat With thermostat.5 Without Thermostat With thermostat 1.3 1.5 Kinetic Energy 1. 1.15 1.1 Power Spectra 1.5 1 1.05 1 0.5 0.95 0.9 40 50 60 70 80 90 100 110 10 130 Time 0 0 40 60 80 100 10 140 Frequency 3: Lennard-Jones 64000 Nose-Hoover NVE Nose-HooverNVT T = 1 ( ) T = 1.33 T = 1 τ τ [8] ( p ) T = 1 k B = 1 ṗ = q pζ q = p ζ = 1 τ (p 1) ζ ṗ = q pζ ζ p (45) τ ζ = pṗ (46) τ ζ = p( q pζ) = p ζ pq τ ζ = ζ(τ ζ + 1) pq (47) τ ζ + τ ζ ζ + ζ = pq (48) τ ζ pq() pq0 τ ζ + τ ζ ζ + ζ = 0 (49)

13 ζ q p 4: Nosé Hoover p ζ ζ(t) = τ 1 ζ(t/τ) (50) (49) ζ + ζ ζ + ζ = 0 (51) τ τ τ x = ζ, y = ζ ẋ = y (5) ẏ = x(y + 1) (53) E = x + y log(y + 1) x + y log(y + 1) = E ζ τ 3 Nosé Hoover Nosé Hoover Chain Kinetic-Moments (49) Nosé Poincaré Gaussian-Thermostat 3 Lennard-Jones

14 1.1 Tau=1 Tau=10 Tau=100 1.05 1 0.95 0.9 0.85 0 50 100 150 00 50 300 350 400 450 500 5: τ 3 Lennard-Jones T = 0.90.7 N = 68147 τ = 1, 10, 100 m T q i = p i m p i = V ζ = 1 τ ζp i q i ( 1 3N 3N i p i k B T ) (54) (44) 3N (44)τ (54) (54)5τ 1, 10, 100 τ τ 10 3.3 Nosé Hoover ( 6 ) Nosé Hoover Chain [9] Kinetic-Moments [10] Nosé Hoover Nos e Hoover [11, 1] 1 T A = lim A(t)dt (55) T T 0 10 exp( γt) sin(ωt) t/τ

15 0.8 q 0.4 0 ζ 0.08 0-0.08-0.4-0.8-0.8-0.4 0 0.4 0.8 p -0.8-0.4 p 0 0.4-0.4 0 q 0.4 0.8 6: Nosé Hoover (p, q) (p, q, ζ) E exp( E/k B T ) H = p / + q / Nosé Hoover (45) ṗ = q pζ q = p ζ = 1 τ (p 1) 3. p = r cos θ q = r sin θ ṙ = rζ cos θ ζ = 1 τ (r cos θ 1) τ r ζ θ cos θ 0 < t < π ṙ = πrζ ζ = π τ (r )

16 r + τ ζ ln r = C (56) C 6 τ ζ / 0 H = r /H H 1 ln H C (57) C C + ln (57) H H 0exp( βh) (3.3) Nosé Hoover Kinetic Moments Nosé Hoover Chain( ) 3.4 Nosé Hoover ( ) 1.. Nosé Hoover 3. 4. ( 7) / Langevin Langevin

17 熱を受け取りやすい場所 熱を受け取りにくい場所 熱流 7: 4 [1] L. V. Woodcock, Chem. Phys. Lett., 10, 57 (1971). [] W. G. Hoover, A. J. C. Ladd, and B. Moran, Phys. Rev. Lett., 48, 1818 (198); D. J. Evans, J. Chem. Phys, 78, 397 (1983). [3] S. Nosé, Mol. Phys. 5 55 (1984). [4] W. G. Hoover, Phys. Rev. A, 31, 1695 (1985). [5] H. J. C. Berendsen et al., J. Chem. Phys., 81, 3684 (1984). [6] S. D. Bond, B. J. Leimkuhler, and B. B. Lairdy, J. Comput. Phys., 151, 114 (1999). [7] M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys., 97, 1990 (199) [8] H. Watanabe and H. Kobayashi, Molecular Simulation, 33, 77 (007). [9] G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys., 97, 635 (199). [10] W. G. Hoover and B. L. Holian, Phys. Lett. A, 11, 53 (1996).

18 [11],, 6 10, 785 (007) [1] H. Watanabe and H. Kobayashi, Phys. Rev. E, 75, 04010(R), (007).