5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

Similar documents
master.dvi

30

all.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

i Γ

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

QMI_10.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

QMI13a.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Part () () Γ Part ,

gr09.dvi

Maxwell

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

IA

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Chap11.dvi


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Gmech08.dvi

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

v er.1/ c /(21)

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

DVIOUT

201711grade1ouyou.pdf

29

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

The Physics of Atmospheres CAPTER :


6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1


1

II 2 II

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

0 0. 0

Untitled

TOP URL 1

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)


1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence


70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

( ) ,

I 1

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A



QMII_10.dvi

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

i 18 2H 2 + O 2 2H 2 + ( ) 3K

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

2000年度『数学展望 I』講義録

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

chap03.dvi

振動と波動

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

chap1.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Acrobat Distiller, Job 128

Transcription:

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N = µ T (5.1) 5.2 T µ 44

(Grand canonical ensemble) S T µ S S S E, E R E tot N, N R N tot E tot = E + E R, N tot = N + N R S R (E R, N R ) E R N R S E N exp(s R /k) p(e, N) p(e, N) exp [S R (E tot E, N tot N)/k] [ 1 = exp k S R(E tot, N tot ) E S R N ] S R + k E R k N R exp [ (E µn)/kt ] (5.2) (Grand canonical distribution) 5.3 E N A(E, N) A = i,n A(E i(n), N)e β(e i(n) µn) i,n e β(e i(n) µn) (5.3) Z G = e β[ei(n) µn] = Z N e Nβµ (5.4) i,n i,n Z N N (Grand partition function) 45

E µn = ln Z G β N = 1 ln Z G β µ E = ln Z G β + µ β ln Z G µ (5.5) Helmholtz (5.4) N Z G = N e βµn e βf (T,N) = N β[f (T,N) µn] e F (T, N) N N e β[f (T,N) µn] e β[f (T,N ) µn ] N 1 β ln Z G = F (T, N) µn (5.6) N F (T, N) N = µ (5.7) 1 1 F (T, N + 1) F (T, N) F (T, N) N (5.7) (5.7) N = µ 5.4 46

E e β[e T S(E,N)] = e βf (T,N), F (T, N) = 0 (5.8) N (5.7) µ = 0 5.5 5.5.1 µ N Z N ( [ 2πm V e Nβφ ( ) ] 3/2 N 2πm Z N = V N e Nβφ N!h 3N β ) 3N/2 = 1 N! φ p 2 /2m + φ (5.4) Z G Z G = λ N Z N = N=0 N=0 [ 1 λv e βφ N! h 3 h 3 ( ) ] 3/2 N 2πm [λv e βφ ( ) ] 3/2 2πm = exp β h 3 β λ = e βµ N β (5.9) N = 1 β ln Z G µ = V ( ) 3/2 2πm h 3 e β(µ φ) β N/V ( ) βh 2 3/2 e βφ (5.10) e βµ = N V 2πm ln Z G β ln Z G β = µλv ( ) 3/2 2πm h 3 + λv β h 3 = µn 3 N 2 β ( 2πm β ) 1/2 ( 3 2 ) 2πm β 2 47

(5.10) µ E ( µ E = β µ β ) ln Z G = µn (µn 3N/2β) = N ( ) 3 2 kt + φ (5.10) A, B φ A, φ B N/V e βφ n A n B = e β(φ B φ A ) V/N r 0 T 0 4π 3 r3 0 = V N, h 2 2mr 2 0 = 1 2 kt 0 r 0 19 e βµ = 3 4π [ µ = t kt 0 ( ) 3/2 ( 1 λt 2π log 3 4π ( 1 2π ) 2 = 3 ( 1 r 0 4π 2π ) ] 3/2 3 2 log(t) ) 3/2 ( ) 3/2 T0 (5.11) T, (t = T/T 0 ) T 0 /T 1 e βµ 1 10.0 0.0 µ/kt 0 10.0 20.0 0.0 1.0 2.0 t 19: 48

Z G p r 0 1 z(p, r) 1 + e β(p2 /2m µ) (5.12) e βµ 1 Z G = [ 1 Π r Π p z(p, r) = exp h 3 dr = [ V e βµ ] exp h 3 dpe βp2 /2m = exp ] dp log z(p, r) [ V e βµ h 3 ( ) ] 3/2 2πm β (5.13) log z (5.13) 1/h 3 log z(p, r) = log[1 + e β(p2 /2m µ) ] e β(p2 /2m µ) ( ) z(p, r) = e log[z(p,r)], Π i exp(a i ) = exp A i (5.13) (5.9) (5.10) { [ F = N ( ) ] } 3/2 V 2πm ln β N βh 2 + 1 = N β = Nµ N/β i [ ln e βµ + 1 ] N/β = pv F + pv = Nµ F + pv Nµ Gibbs 5.5.2 T µ ω N Z N ( ) N 1 Z N = β hω 49

Z G = λ N Z N = N=0 N=0 ( ) N λ = β hω 1 1 λ β hω ( ) λ exp β hω λ = e βµ (5.5) N = 1 β ln Z G µ = 1 λ β 2 hω µ = λ β hω β ln Z G β = λ β 2 hω + 1 λ β hω β = N β + µn ( µ E = β µ ) ln Z G = µn (µn N/β) = N/β β 5.5.3 Langmuir (Adsorption) ( ) N 0 1 ε (ε > 0) 2 T µ 20: Z ad G = [ 1 + λe βε] N 0, (λ = e βµ ) 50

1 1 + e β( ε µ) (5.5) N ad N ad = 1 β ln Z ad G µ = N 0λe βε 1 + λe βε (5.14) N V λ = N V ( βh 2 2πm ) 3/2 = p ( ) βh 2 3/2 (5.15) kt 2πm (5.15) (5.14) θ = N ad /N 0 θ = p p + p 0 (T ), p 0(T ) = kt e βε ( ) 3/2 2πm βh 2 Langmuir θ 1/p 0 (T ) p 0 (T ) θ 1 (5.14) N ad N 0 N ad S(N ad ) = [ ] N 0! k log (N 0 N ad )!N ad! = k[n 0 log N 0 (N 0 N ad ) log(n 0 N ad ) N ad log N ad ] N ad S(N ad ) N ad = k[log(n 0 N ad ) log N ad ] (5.16) (5.1) N ad S N = S E T E N + S N = 1 ( ε µ) (5.17) E T (5.16) (5.17) (5.14) 5.6 Gibbs 2 21 51

E, V E r, V r E t, V t 2 E t = E + E r, V t = V + V r E r, V r Ω r = exp [S r (E r, V r )/k] E V p(e, V ) p(e, V ) exp [S r (E t E, V t V )/k] [ exp E S r k E V ] S r = exp [ β(e + pv )] k V p S p E, V R E R, V R 21: Z = dv de exp [ β(e + pv T S(E, V ))] Z exp [ βg(t, p)] G(T, p) Helmholtz G(T, p) = E + pv T S(E, V ) = F (T, V ) + pv (5.18) S(E, V ) E = 1 T, S(E, V ) V = p T 52

Helmholtz G(T, p) Gibbs T, p Gibbs Helmholtz Gibbs ( ) G F V p = V + p p + V = V Helmholtz ( ) G F V N = V + p N + F N = µ (5.19) Gibbs Nµ Gibbs Gibbs Extensive ξ G(T, p, ξn) = ξg(t, p, N) ξ ξ = 1 G N G(T, p, N) N = G(T, p, N) N G G(T, p, N) = g(t, p)n N g(t, p) N (5.19) Gibbs N G(T, p, N) = Nµ(T, p) α Gibbs G(T, p, N) = α N α µ α (5.18) Z G 1 β ln Z G = F µn = G pv + µn = pv 5.7 x, y, z, F (x, y, z, ) df (x, y, z, ) = Xdx + Y dy + Zdz + (5.20) 53

X, Y, Z, x, y, z, X(x, y, z, ) = F x, F Y (x, y, z, ) = y, (5.21) F X, Y, Z, G(X, Y, Z, ) G(X, Y, Z, ) = F (x, y, z, ) Xx Y y Zz (5.22) (5.21) x, y, z, F G G dg(x, Y, Z, ) = xdx ydy zdz (5.23) (5.22) X ( G F X = x + x X = x ) x X + ( F ) y ( F ) z y Y X + z Z X + 1 2 (5.21) G(X, Y, Z, ) F (x, y, z, ) F (x, y, z, ) = G(X, Y, X, ) + Xx + Y y + Zz + (5.24) X, Y, x(x, Y, Z, ) = G X, G y(x, Y, Z, ) = Y, (5.25) G(T, p, N) = F (T, V, N) pv, F (T, V, N) = G(T, p, N) + pv, F V = p G p = V 54

6 19 20 Planck T 2 Planck Einstein [ 19 ] Maxwell Einstein λ ν (c ) ε(p) = cp, ν = c, ( c = λν) (6.1) λ ε(p) = hν = hω, p = 2π (6.2) λ 2 1. T 2. 6.1 (6.1) H = i cp i (6.3) T V N Z = V N N!h 3N Π i d 3 p i exp[ βh] = V N [ ] N 8π N!h 3N (βc) 3 55

Helmholtz F (T, V, N) F = N [ ln V ] β N + 1 + ln 8π (βch) 3 2 2 N/2 N V N [ ] N 8π Z = (N/2)!(N/2)!h 3N (βc) 3, F = N [ ln 2V ] β N + 1 + ln 8π (βch) 3 E p (6.4) E = ln Z β p = F V = N β = 3N β 1 V = E 3V (6.5) p E/V 1/3 (6.1) p 2 p 2 2/3 N (6.4) F N F N = 1 [ ln 2V ] β N + 1 + ln 8π (βch) 3 + N 1 β N = 0 N V = 2 8π ( ) 3 kt (βch) 3 = 16π (6.6) ch (6.5) E V = 48πk4 (ch) 3 T 4 4 Stefan-Boltzmann T 4 (6.6) 1 l/2 V/N = 4π(l/2) 3 /3 l l(t ) = ( 3 ) 1/3 ch 8π 2 kt (6.7) 56

(p x, p y, p z ) δp x δp y δp z f(p)δp x δp y δp z f(p) Maxwell-Boltzmann f(p) f(p) exp[ cp/kt ], p = (p 2 x + p 2 y + p 2 z) 1/2 p p+dp ρ(p)dp ρ(p) ρ(p) = 8πV h 3 p2 exp[ cp/kt ] p (6.6) T p ω ρ(ω) = V ω2 π 2 c 3 exp[ hω/kt ] ω hω u(ω) u(ω) = hωρ(ω) = V hω3 π 2 exp[ hω/kt ] (6.8) c3 Wien (1896) Wien Stefan-Boltzmann Wien 57

6.2 Maxwell λ ω = 2πc/λ T kt V L V = L 3 λ λ = 2L/n, (n = 1, 2, 3, ) k λ 2π/λ (k x, k y, k z ) ( k µ ) k x = n xπ L, k y = n yπ L, k z = n zπ L n x, n y, n z (π/l) 3 1 2 k k + δk 4πk 2 dk/8 k µ 8 ρ(k)dk ρ(k) ρ(k)dk = 1 (π/l) 3 24πk2 8 dk = V π 2 k2 dk (6.9) V (6.9) V (2π) 3 dk = V 2π 2 k 2 dk = 1 h 3 dr dp (6.10) 2 p = hk h kt (6.9) u(ω) u(ω) = V hω2 π 2 kt (6.11) c3 Rayleigh-Jeans 58

6.3 Planck Reyleigh-Jeans (6.11) ( ) Wien 2 2 (6.8) (6.11) u(ω) = V ω2 π 2 kt f( hω/kt ) (6.12) c3 x = hω/kt f(x) (6.7) l(t ) x = hω kt = ch λkt = ( 8π 2 3 ) 1/3 l(t ) λ x 5 x x 1 l(t ) λ x 1 l(t ) λ 5: (6.12) f(x) x 1 x 1 xe x 2 Planck f(x) 2 22 π 2 u(ω)(kt/ hc) 3 /V x = hω/kt u(ω) = V ω2 π 2 c 3 hω e hω/kt 1 (6.13) Planck Planck (6.13) u(ω) = V ω2 π 2 c 3 n=1 (n hω)e n hω/kt ω hω ω ε hω z = 1 + e β hω + e 2β hω + e 3β hω + = 59 1 1 e β hω (6.14)

2.0 1.5 1.0 0.5 0.0 0.0 2.0 4.0 6.0 8.0 10.0 x 22: : Wien Rayleigh-Jeans (6.13) ε = 1 z k (k hω)e kβ hω = β ln z = β ln(1 e β hω hω ) = e β hω 1 (6.14) 6.4 1 p, p = h/λ, λ 2 Wien Rayleigh-Jeanes 60

λ l(t ) λ l(t ) 2 (6.14) 2 0 1 µ e βµ e βµ = 1 2 2 p 2 (5.12) 0 (6.14) 0 1 2 2 61