nenmatsu5c19_web.key

Similar documents
q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i


7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

LHC-ATLAS Hà WWà lνlν A A A A A A

,,..,. 1

untitled

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

TeV b,c,τ KEK/ ) ICEPP

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析


main.dvi



km_atami09.ppt

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38


0406_total.pdf

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

Electron Ion Collider と ILC-N 宮地義之 山形大学

Microsoft PowerPoint - okamura.ppt[読み取り専用]

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

arxiv: v1(astro-ph.co)

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

Kaluza-Klein(KK) SO(11) KK 1 2 1

PowerPoint Presentation

Mott散乱によるParity対称性の破れを検証

untitled

総研大恒星進化概要.dvi

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

TOP URL 1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Einstein ( ) YITP

untitled

抄録/抄録1    (1)V

TOP URL 1

余剰次元のモデルとLHC

susy.dvi


Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

rcnp01may-2

201711grade1ouyou.pdf

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

本文/目次(裏白)

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

KENZOU Karman) x

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

ohpmain.dvi

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

LEPS

tokei01.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

chap10.dvi

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

Slide 1

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

TOP URL 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

05Mar2001_tune.dvi

all.dvi

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

Canvas-tr01(title).cv3

4/15 No.

陦ィ邏・2

第90回日本感染症学会学術講演会抄録(I)

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

J-PARC October 14-15, 2005 KEK

( ) ( )

02-量子力学の復習

スライド タイトルなし

nakayama.key

Ł\”ƒ-2005

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

PowerPoint Presentation

nakajima_

Microsoft PowerPoint - nakamuraJPS2005av2

untitled

PowerPoint Presentation

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

B-p タギング法を

1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

untitled

500 6 LHC ALICE ( 25 ) µsec MeV QGP

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB

Transcription:

KL π ± e νe + e - (Ke3ee)

Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%)

Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%)

Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 Mee Me + e - (GeV/c2 )

Ke3ee MC

Ke3 ν e + K 0 π - Ke3 KL (0.4067±0.0011) ; 40.67(%)

Ke3 K 0 ν e + e + - ν current π - M kl3 = G F 2 < e + ν (J µ ) + 0 >< π (p π ) J µ K 0 (p K ) >

Ke3 K 0 ν e + π - e + - ν current K 0 -π - current M kl3 = G F 2 < e + ν (J µ ) + 0 >< π (p π ) J µ K 0 (p K ) >

Ke3 ν e + CKM Vus K 0 s π ū - K 0 -π - current Model

K-π current Vus form factor K-π current Γ Kl3 = G 2 F M 5 K 192π 3 S EW (1 + δ l K)C 2 V us 2 f 2 +(0)I l K K 0 ν t = Pw 2 π - e + f + (t) = ( f + (0) 1 + λ + t M 2 π + 1 2 λ + t 2 M 4 π )

Ke3ee form factor Γ Kl3 = G 2 F M 5 K 192π 3 S EW (1 + δ l K)C 2 V us 2 f 2 +(0)I l K ɛ µ e q 2 ūγµ v Gauge invariance MC K-π current

Chiral Perturbation Theory (ChPT) Tune (Ke3ee) ChPT QCD

ChPT (Chiral symmetry) Chiral symmetry Gauge symmetry ψ L = e iβ ψ L, } 1 2 (1 γ 5)ψ = ψ L 1 2 (1 + γ 5)ψ = ψ R ψ R = e +iβ ψ R

ChPT (Chiral symmetry) Dirac eq. γ µ i µ ψ R mψ L = 0 γ µ i µ ψ L mψ R = 0 mass

ChPT (Chiral symmetry) Dirac eq. γ µ i µ ψ R mψ L = 0 γ µ i µ ψ L mψ R = 0 mass m = Chiral symmetry =

ChPT (Spontaneously symmetry breaking) Chiral symm. quark Mass Mass less Pseudo scaler meson (Higgs Gauge symm. Mass less pseudo scaler ) <qq>=0 <qq>=0 http://www.riken.go.jp/r-world/ research/results/2004/040309/ Mass less pseudo scaler meson =Nambu-Goldston Boson (NGB) NGB

Chiral for ChPT exp u, d, s flavor symmetry [ i ] 8 λ i θ Li i 1 γ 5 2 u d s, exp [ i ] 8 λ i θ Ri i 1 + γ 5 2 u d s SU(3)L SU(3)R SU(3)V SU(3)A symmetry symmetry

NGB -- π, K, η pseudo scaler messon NGB [ m = 0 (Higgs ) u, d, s.] U = exp [ i 8 i ] 1 λ i φ i F π 8 λ i φ i = 2 i L 2 = 1 4 F 2 tr{ µ U µ U + 2B 0 M(U + U )} 1 2 π 0 + 1 6 η 8 π + K + π 1 2 π 0 + 1 6 η 8 K 0 K0 2 6 η 8 K p µ p µ /4πF 1

Why Ke3ee? K 0 ν π e + γ(q) - γ : K-π current ( Brems.) Eγ spectrum Brems. ν K energy Vertual γ* e+e- Mee q µ q µ 0

Ke3ee - Ke3ee Ke3 - Ke3 Vus - K-π current form factor - Ke3 form factor Ke3ee - ChPT MC (Tune ) - Ke3ee ChPT (QCD) - Massive radiation Ke3γ

!"#$%&#'#(')*+%,-..%/)01234*5'2)0 KTeV experiment 1.5 10 11 KL 0.2GeV kick

Event selection 1) Four track event with good Vertex quality 2) PID (π ± e e + e - )

PID by E/p 10 5 π e 10 4 10 3 10 2 10 1 0 0.2 0.4 0.6 0.8 1 1.2 Energy on CsI / Momentum of track

Particle ID by TRD e π Transition Radiation Depends on relativistic parameter γ radiator x ray detector 8 modules 10 4 10 3 10 2 10 e π 1 0 0.2 0.4 0.6 0.8 1 e like probele π like TRD parameter

Backgrounds KL π + π - π 0 D (π0 e + e - γ) One π ± fakes e ± KL π ± e + ν π 0 D (π0 e + e - γ) Important π-e rejection! KL π ± e + ν γ (γ e + e - : external conversion) KL π + π - π 0 4e (π 0 e + e - e + e - )

One more cut to reject KL π + π - π 0 D pp0kine Assuming : KL π + π - π 0 : missing π 0 P 0 P + - We have P// 0 π + e - e + e - Kaon =± pp0kine 1000 800 600 400 200 0 : MC KL π + π - π 0 D : MC Ke3ee : Data -0.06-0.04-0.02 0 0.02 0.04 0.06 0.22 * pp0kine pp0kine (GeV 2 /c 2 )

Comparison between Data/MC Pν *2 : Squared longitudinal momentum of neutrino in Kaon rest frame. 10 3 10 2 10 1 BG sample ID Entries Mean RMS UDFLW OVFLW ALLCHAN 987102 987103 1004 4468 216 852 0.1257E-01 0.7718E-02 0.3606E-02 0.1614E-01 0.7070E-02 0.5093E-02 0.5079E-02 0.4095E-02 0.0000E+00 0.0000E+00 457.0 258.7 176.0 184.3 : Data : Ke3ee : KL π + π - π 0 D : π ± e + ν π 0 D : π + π - π 0 4e : Ke3γ 0 0.005 0.01 0.015 0.02 0.025 0.03 Pν *2 (GeV 2 /c 2 ) (Data-BG)/MC data/mc 10 4 10 3 10 2 10 1 Pv *! 2 /dof = 55.7 / 29 Ppieee * Pv// * Kaon 0 0.005 0.01 0.015 0.02 0.025 0.03 (((()-(0.910389 *))-(1.6297 *))-(0.1158 P *2 n *))-(0.4327 (GeV 2 /c 2 )*) 2 60.07 / 26 1.8 A0 1.008 0.1001E-01 1.6 A1-3.606 1.986 1.4 1.2 1 0.8 0.6 0.4 0.2 Slope=-3.9±2.2 Scale factor =0.2572±0.0020 0 0 0.005 0.01 0.015 0.02 0.025 0.03 (((()-(0.910389 *))-(1.6297 *))-(0.1158 P *2 n *))-(0.4327 (GeV 2 /c 2 )*) Pν *2 (GeV 2 /c 2 )

LO vs. Next to LO(t/Mπ 2,min) 1000 data/mc 800 600 400 200 " 2 /dof = 71.3 / 32 0 0 1 2 3 4 5 6 (((()-(0.910389 *))-(1.6297 *))-(0.1158 t/m! *))-(0.4327,min(LO) *) 2 31.90 / 31 1.8 A0 0.8913 0.1841E-01 1.6 A1 0.3889E-01 0.6265E-02 1.4 1.2 1 0.8 0.6 0.4 0.2 Scale factor =0.3199±0.0025 Slope=(3.9±0.6)x10-2 0 0 1 2 3 4 5 6 (((()-(0.910389 *))-(1.6297 *))-(0.1158 t/m! *))-(0.4327,min(LO) *) 1000 LO (p 2 ) NLO (p 4 ) 800 : MC : data-bg data/mc 600 400 200 " 2 /dof = 35.4 / 32 0 0 1 2 3 4 5 6 (((()-(0.910389 *))-(1.6297 *))-(0.1158 *))-(0.4327 t/m!,max *) 2 33.81 / 31 1.8 A0 0.9754 0.1946E-01 1.6 A1 0.7913E-02 0.6418E-02 1.4 1.2 1 0.8 0.6 0.4 0.2 Scale factor =0.2566±0.0021 Slope=(7.9±6.4)x10-3 0 0 1 2 3 4 5 6 (((()-(0.910389 *))-(1.6297 *))-(0.1158 *))-(0.4327 t/m!,max *) t/mπ 2 t/mπ 2 : MC : data-bg

Comparison between Data/MC 10 4 10 3 10 2 10 1 Energy of electron (of pair) Ee - ID Entries Mean RMS UDFLW OVFLW ALLCHAN 987103 987102 2870 158 156 52 10.93 9.405 9.046 12.45 9.191 6.480 5.415 9.321 0.0000E+00 0.0000E+00 128.7 71.01 11.25 166.2 : Data : Ke3ee : KL π + π - π 0 D : π ± e + ν π 0 D : π + π - π 0 4e : Ke3γ 0 10 20 30 40 50 60 70 (GeV) (Data-BG)/MC data/mc 10 4 10 3 10 2 10 1! 2 /dof = 30.7 / 31 Pν *2 < 0.005 GeV 2 /c 2 BG sample Slope=(0.8±1.0) 10-3 GeV -1 0 10 20 30 40 50 60 70 (((()-(0.910389 *))-(1.6297 *))-(0.1158 Ee - *))-(0.4327 (GeV) *) 2 33.25 / 30 1.8 A0 0.9894 0.1260E-01 1.6 A1 0.8429E-03 0.1021E-02 1.4 1.2 1 0.8 0.6 0.4 0.2 Scale factor =0.2571±0.0020 0 0 10 20 30 40 50 60 70 (((()-(0.910389 *))-(1.6297 *))-(0.1158 Ee - *))-(0.4327 (GeV) *) Ee - (GeV)

Comparison between Data/MC Invariant mass of e + e - 10 4 10 3 10 2 10 1 ID Entries Mean RMS UDFLW OVFLW ALLCHAN 987103 987102 1610 138 110 14 0.2642E-01 0.1164E-01 0.1884E-01 0.2064E-01 0.2228E-01 0.1370E-01 0.1882E-01 0.1947E-01 0.0000E+00 0.0000E+00 93.22 112.4 3.029 50.07 : Data : Ke3ee : KL π + π - π 0 D : π ± e + ν π 0 D : π + π - π 0 4e : Ke3γ 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Me + e - (GeV/c 2 ) (Data-BG)/MC data/mc 10 4 10 3 10 2 10 1! 2 /dof = 27.0 / 26 Pν *2 < 0.005 GeV 2 /c 2 BG sample Slope=1.10±0.55 (GeV/c 2 ) -1 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 (((()-(0.910389 *))-(1.6297 *))-(0.1158 Me + e - *))-(0.4327 (GeV/c 2 ) *) 2 20.44 / 24 1.8 A0 0.9788 0.1305E-01 1.6 A1 1.103 0.5608 1.4 1.2 1 0.8 0.6 0.4 0.2 Scale factor =0.2573±0.0023 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 (((()-(0.910389 *))-(1.6297 *))-(0.1158 Me + e - *))-(0.4327 (GeV/c 2 ) *) Me + e - (GeV/c 2 )

Significance of slopes Slope/δslope E Kaon,max E Kaon,min Z vertex E π E e±(ke3) E e-(pair) Me + e - Me±e + e - Mπ±e e + e -

Observed events and estimated BG (Normalization mode KL π + π - π 0 D) without Pν *2 cut Pν *2 <0.005(GeV 2 /c 2 ) Ke3ee(with BG) 19466 evts 14080 evts KL π + π - π 0 D 356.1 evts 34.3 evts KL π ± e + ν π 0 D 256.0 evts evts 88.2 evts KL π ± e + ν γ 132.0 evts 84.7 evts KL π + π - π 0 4e 182.2 evts 2.6 evts Ξ Λ π 0 D 1.7 evts 0.3 evts Double Ke3 39.5 evts 29.1 evts N/S 5.0% 1.7% BR[Ke3ee] (1.673±0.052) 10-5 (1.663±0.053) 10-5

Statistic 0.84 Systematic Correction and error(%) cut variation 0.82 π ineff. (E/p) δ=0.72 0.05 π loss in TRD δ=2.91 (2.24,Signal ) (2.58,norm.) error(%) 0.59 e ineff.(e/p) δ= 0.39 0.10 Radiative corr. δ= 2.1 0.1 Systematic Total(internal) 1.02 Systematic (external) 2.84 Systematic Total 3.02

Summary Ke3ee ChPT - ChPT Ke3ee event - ChPT NLO - Me + e - Preriminary - BR(Ke3ee)=1.673±0.014(stat)±0.051(sys) 10-5

Event Selection Pick up π± e + - e + e -...ke3ee - EKaon < 200 GeV (Both soln.) 95 < Z vertex < 150 m Vertex 2 < 125 0.93 < E/p < 1.15 for electron tracks E/p < 0.9 for pion tracks TRD probability < 0.06 for electron tracks for Ke3ee Ee (pair) > 3 GeV Me+e- > 0.005 GeV/c 2 for pm0d Mπ ± e + e + e - < 0.5 GeV/c 2 0.492 < Mpm0 < 0.504 GeV/c 2-0.127 >Me + e - g> 0.143 GeV/c 2 pp0kine < - 0.002 (GeV/c) 2 pp0kine > - 0.002 (GeV/c) 2 Ee (Ke3) > 10 GeV - π + π - e + e -..pm0d Eπ ± > 10 GeV Eπ ± > 8 GeV (for one π ± )