CHEMOTHERAPY OCT. 1993

Similar documents

Fig.1 Chemical structure of BAY o 9867

CHEMOTHERAPY APR Fig. 1 Chemical structure of cefotetan (CTT, YM09330)


Fig. 1 Chemical structure of DL-8280


CHEMOTHERAPY FEB Table 1. Activity of cefpirome and others against clinical isolates

CHEMOTHERAPY


VOL.32 S-7 CHEMOTHERAPY Table 1 MIC of standard strains of CTRX Fig. 2 Cumulative curves of MIC S. aureus (26 strains )

CHEMOTHERAPY NOV S. aureus, S. epidermidis, E. coli, K. pgeumoniae, E. cloacae, S. marcescens, P. mirabilis, Proteus, P. aeruginosa Inoculum siz

Key Words: Klebsiella pneumoniae, CEP-AIS, MIC, "MBC", MIC of drugs in combination


CHEMOTHERAPY aureus 0.10, Enterococcus faecalis 3.13, Escherichia coli 0.20, Klebsiella pneumoniae, Enterobacter spp., Serratia marcescens 0.78, Prote

VOL.47 NO.5 Table 1. Susceptibility distribution of Ĉ- lactams against clinical isolates of MRSA MRSA: rnethicillin- resistant Staphylococcus aureus


Table 1. Antibacterial activitiy of grepafloxacin and other antibiotics against clinical isolates

coccus aureus Corynebacterium sp, Haemophilus parainfluenzae Klebsiella pneumoniae Pseudornonas aeruginosa Pseudomonas sp., Xanthomonas maltophilia, F

CHEMOTHERAPY Table 1 Urinary excretion of mezlocillin Fig. 4 Urinary excretion of mezlocillin Fig. 3 Blood levels of mezlocillin

Staphylococcus sp. K.pneumoniae P.mirabilis C.freundii E. cloacae Serratia sp. P. aeruginosa ml, Enterococcus avium >100ƒÊg/ml

1272 CHEMOTHERAPY MAR. 1975


Clostridium difficile ciprofloxacin, ofloxacin, norfloxacin Bifidobacterium Lactobacillus Lactobacillus Bacteroides fragilis B. fragilis C. difficile

VOL. 23 NO. 3 CHEMOTHERAPY 1067 Table 2 Sensitivity of gram positive cocci isolated from various diagnostic materials Table 3 Sensitivity of gram nega

988 CHEMOTHERAPY NOV. 1971

CHEMOTHERAPY FEB Table 1 Background of volunteers


VOL.35 S-2 CHEMOTHERAPY Table 1 Sex and age distribution Table 2 Applications of treatment with carumonam Table 3 Concentration of carumonam in human

CHEMOTHERAPY JUNE 1987 Table1 Media used *BHIB, brain heart infusion broth (Difco); /3 -NAD, S -nicotinamidoadeninedinucleotide (Sigma Chemical Co.);

CHEMOTHERAPY APRIL 1992 Acinetobacter calcoaceticus Staphylococcus aureus, Escherichia coli P. aeruginosa E. eoli, Klebsiella pneumoniae Serratia marc

epidermidis, Enterococcus faecalis, Enterococcus Klebsiella pneumoniae, Proteus mirabilis, indolepositive Proteus spp., Enterobacter spp., Serratia

Fig. 1 Chemical structure of KW-1070

VOL.42 S-1

CHEMOTHERAPY



VOL. 34 S-2 CHEMOTH8RAPY 913

CHEMOTHERAPY Proteus mirabilis GN-79 Escherichia coli No. 35 Proteus vulgaris GN-76 Pseudomonas aeruginosa No. 11 Escherichia coli ML-1410 RGN-823 Kle

Jan THE JAPANESE JOURNAL OF ANTIBIOTICS XL-1 Table 1. Outline of administering doses, routes and sampling times *: 4 ml/hr/kg Bacillus subtilis

Table1MIC of BAY o 9867 against standard strains

Key words: Disinfectants, Gram negative rods, Bactericidal effect P. aeruginosa 1, P. fluorescens 20 P. putida 179, P. cepacia 216 P. maltophilia 227,

Key words: change serotype, Pseudomonas aeruginosa anti-pseudomonal drug,

Key words : 7432-S, Oral cephem, Urinary tract infection Fig. 1. Chemical structure of 7432-S.

Key words:fatty acid,plant oil,staphylococcus aureus,skin care, atopic dermatitis

CHEMOTHERAPY APR Fig. 2 The inactivation of aminoglycoside antibiotics by PC-904 Fig. 3 Serum concentration of PC-904 (1) Fig. 4 Urinary recover


CHEMOTHERAPY JUNE 1993 Table 1. Background of patients in pharmacokinetic study

CHEMOTHERAPY JUN Citrobacter freundii 27, Enterobacter aerogenes 26, Enterobacter cloacae 27, Proteus rettgeri 7, Proteus inconstans 20, Proteus

CHEMOTHERAPY DEC Table 1 Antibacterial spectra of T-1982, CTT, CMZ, CTX, CPZ and CEZ 106 CFU/ml Note: P; Peptococcus, S; Streptococcus, G; Gaffk

CHEMOTHERAPY Fig. 1 Chemical structure of CXM-AX


CHEMOTHERAPY Table 1 Clinical effect of Sultamicillin


2108 CHEMOTHERAPY SEPT Table 1 Antimicrobial spectrum Fig. 1

VOL. 23 NO. 3 CHEMOTHERAPY 1379 Table 1 Susceptibility of clinical isolated strains to Tobramycin

Table 1. Antimicrobial drugs using for MIC




CHEMOTHERAPY JUNE 1986

untitled


CHEMOTHERAPY

CHEMOTHERAPY APR. 1984

THE JAPANESE JOURNAL OF ANTIBIOTICS 65 6 Dec DNA 2, , % 1.65% 1.17% 90% 9 Escherichia coli -

CHEMOTHERAPY OCT Fig. 1 Chemical structure of CVA-K

Key words: E. coli O 157: H7, fosfomycin, verotoxin, mouse infection

Table 1. MICs of fosfomycin and other antibiotics determined by agar dilution method against Pseudomonas aeruginosa FOM: fosfomycin, PIPC: piperacilli

VOL.30 S-1 CHEMOTHERAPY Table 1 Antibacterial activity of CTT against standard strains Table 2 Antibacterial activity of CTT against standard strains

VOL. 36 S-3 CHEMOTHERAPY 437

CHEMOTHERAPY Methicillin-resistant S.aureus(MRSA) coccus epidermidis 105 Streptococcus pyogenes E.faecali senterococcus avium Enterococcus faecium Str


Dec. THE JAPANESE JOURNAL OF ANTIBIOTICS XXXVII (45)


CHEMOTHERAPY NOV Fig.1 Combined effect of drug A and drug B Fig. 2 MICs of CEPs (LMOX, CZX, CMX, CPZ) against 27 strains (inoculum size 106 CFU/

Fig.2. Sensitivity distribution of clinical isolates of S. epidermidis (24 strains, 106 CFU/ml) Staphylococcus aureus Staphylococcus epider- midis Ent

VOL.39 S-3

CHEMOTHERAPY Fig. 1 Body weight changes of pregnant mice treated orally with AM- 715 Day of sestation

Fig. 1 The sketch of the neonatal intensive care unit in Tokyo Women's Medical College Hospital. (1979)

CHEMOTHERAPY SEPT. 1970

Jpn.J.Leprosy 67, (1998)

CHEMO THE RAPY OCT. 1994


VOL.48 NO.7 lase negative staphylococci, Escherichia coli, Klebsiella spp., Citrobacter freundii, Enterobacter spp., indole-positive Proteus, Serratia

J. Soc. Cosmet. Chem. Jpn. 7-chome, Edogawa-ku, Tokyo 132, Japan 2.1 J. Soc. Cosmet. Chem. Japan. Vol. 31, No

VOL. 33 S-5 CHEMO THERAPY Fig. 1 Chemical structure of HAPA-B 1-N-[ (2 S)-3-Amino-2-hydroxypropiony1]-4- O-(6-amino-6 - deoxy-ƒ -D- glucopyranosyl) -6

VOL. 43 NO. 4

Table 1. Antibacterial spectrum SBT ABPC ABPC CPZ : sulbactamiampicillin : ampicillin : cefoperazone

Streptococcus pneumoniae,streptococcus pyogenes,streptococcus agalactiae,neisseria gonorrhoeae,h.influenzae,moraxella subgenus Branhamella catarrharis



Katsumi AKUTSU, Koji AMANO and Nagahiro OGASAWARA: Inhibitory Action of Methionine upon the Barley Powdery Mildew (Erysiphe graminis f. sp. hordei) I.

pneumoniae 30, C. freundii 32, E. aerogenes 27, E. cloacae 32, P. mirabilis 31, P. vulgaris 34, M. morganii 32, S. marcescens 31, H. influenzae 27, P.


The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

CHEMOTHERAPY MAY. 1988

THE JAPANESE JOURNAL OF ANTIBIOTICS 48-8 Enterococcus avium 5Š, Corynebacterium xerosis 10Š, Corynebacterium pseudodiphtheriticum 10Š, Corynebacterium

CHEMOTHERAPY APR Fig. 1 Chemical structure of cefotetan (CTT, YM09 Molecular formula (Molecular weight) C17H15N7Na2OS4(619.57)

CHEMOTHERAPY APR. 1982


Transcription:

CHEMOTHERAPY OCT. 1993

VOL. 41 NO. 10

CHEMOTHERAPY Table 1. Antibiotic permeability through biofilm of clinical isolates of Pseudomonas aeruginosa CAZ: ceftazidime, GM: gentamicin. Fig. 1. The effect of incubation periods on permeability of gentamicin through Pseudomonas aeruginosa 201-3 biofilm at a concentration of 50,ug/ml. CAZ: ceftazidime, GM: gentamicin. Fig. 2. Permeability of ceftazidime and gentamicin through Pseudomonas aeruginosa 201-3 biofilm.

VOL. 41 NO, 10 CAZ: ceftazidime, GM: gentamicin, Fig. 3. The effect of Pseudomonas aeruginosa slime on the standard curves of antibiotics. Fig. 4. The effect of slime on bactericidal activities of ceftazidime and gentamicin against Pseudomonas aeruginosa 201-3.

OCT. CHEMOTHERAPY 1068 (a) (b) (c) (d) (e) (f) (g) (h) Fig. 5. filter. Scanning electron microscopy of Pseudomonas aeruginosa 201-3 grown 1993 on the membrane

2) Anwar H, Dasgupta M K, Costerton J W: Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob Agent Chemother 34: 2043 `2046, 1990 6) Costerton J W, Cheng K-J, Geesey G G, Ladd T I, Nickel J C, Dasgupta M, Marrie T J: Bacterial biofilms in nature and disease. Annu Rev Mi- crobiol 41: 435-464, 1987 7) Prosser BLaT, Taylor D, Dix B A, Cleeland R: Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob Agent Chemother 31: 1502-1506, 1987 10) Nickel J C, Ruseska I, Wright J B, Costerton J W: Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofllm on urinary catheter material. Antimicrob Agent Chemother 27: 619-624, 1985 11) Anwar H, van Biesen T, Dasgupta M, Lam K, Costerton J W: Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system. Antimicrob Agent Chemother 33: 1824 ` 1826, 1989 12) Anwar H, Costerton J W: Enhanced activity of combination of tobramycin and piperacillin for eradication of sessile biofilm cells of Pseudomonas aeruginosa. Antimicrob Agent Chemother 34: 1666 4671, 1990 13) Anwar H, Strap J L, Costerton j W: Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agent Chemother 36:1347 `1351, `

CHEMOTHERAPY 15) Obana Y: Pathogenic significance of Acinetobacter calcoaceticus: analysis of experimental infection in mice. Microbial lmmunol 30: 645 `157, 1986 16) Slack M P E, Nichols W W: Antibiotic penetration through bacterial capsules and exopolysaccharides. J Antimicrob Chemother 10: 368 `372, 1982 17) Gilbert P, Collier P J, Brown M R W: Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agent Chemother 34: 1865 `1868, 1990 18) Eng R H K, Padberg F T, Smith S M, Tan E N, Cherubin C E: Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agent Chemother 35: 1824 `1828, 1991 19) Murakawa T: Slime production by Pseudomonas aeruginosa IV. Chemical analysis of two varieties of slime produced by Pseudomonas aeruginosa, Japan J Microbial 17: 513 `520, 1973 20) Slack M P E, Nichols W W: The penetration of antibiotics through sodium alginate and through the exopolysaccharide of a mucoid strain of Pseudomonas aeruginosa. Lancet II: 502 `503, 1981 21) Tannenbaum C S, Hastie A T, Higgins M L, Kueppers F, Weinbaum G: Inability of purified Pseudomonas aeruginosa exopolysaccharide to bind selected antibiotics. Antimicrob Agent Chemother 25: 673 `675, 1984 A new method of measuring antibacterial agents through biofilms Machiko Naito, Tadahiro Matsushita and Totaro Yamaguchi Pharmacological Research Laboratory, Tanabe Seiyaku Co, Ltd, 2-2-50, Kawagishi, Toda, Saitama 335, Japan Takeshi Yokota Juntendo Medical College of Nursing The formation of biofilm is a cause of chronic infection because biofilm blocks the diffusion of antibacterial agents, preventing them from reaching bacteria. To assess the permeability of antibacterial agents through Pseudomonas aeruginosa biofilms, we devised a simple method using an Intercell(R) and a multi-well plate. P. aeruginosa cells were inoculated in an Intercell(R) placed on a brain heart infusion agar plate. Biofilm was formed on the membrane filter of the Intercell(R) during incubation at 37 Ž for 3 days. Scanning electron micrographs showed that the biofilm formed was about 100 pm in thickness and consisted of bacterial and spongy glycocalyx layers. The biofilmformed Intercell I was placed in a multi-well plate, and the surfaces of the biofilm were coated with agar to prevent peeling. A solution of antibacterial agent was added to the Intercell(R) and phosphate buffer was poured into the outside of the Intercell(R) until the levels of the solution on both sides were equal. After incubation at room temperature for 24 hours, the concentration of the antibacterial agents outside the Intercell(R) was measured by bioassay. The diffusion rate of gentamicin (200ƒÊg/ ml) in the presence of biofilm was 42% of that in the absence of biofilm. In addition, the slime prepared from P. aeruginosa lowered the antibacterial potency of gentamicin, and its bactericidal activity decreased with an increase in the concentration of the slime. These findings suggest that biofilm forms a barrier to diffusion of gentamicin, attributable to binding of the drug to alginate which is a primary constituent of P. aeruginosa biofilm. On the other hand, in the case of ceftazidime, no change was observed in the diffusion rate regardless of the presence or absence of biofilm. Furthermore, addition of P. aeruginosa slime did not affect the potency of ceftazidime and its bactericidal activity, suggesting that ceftazidime diffuses freely through biofilm.