Similar documents
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

TOP URL 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

プログラム

H.Haken Synergetics 2nd (1978)

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K


1 1.1 hν A(k,ε)[ k ρ(ω)] [1] A(k,ε) ε k μ f(ε) 1/[1 + exp( ε μ k B T )] A(k,ε)f(ε) ρ(ε)f(ε) A(k,ε)(1 f(ε)) ρ(ε)(1 f(ε)) A(k,ε) σ(ω) χ(q,ω) k B T ev k

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

支持力計算法.PDF

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.



24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)


E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

Note.tex 2008/09/19( )

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

量子力学 問題

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

基礎数学I

薄膜結晶成長の基礎4.dvi

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

: , 2.0, 3.0, 2.0, (%) ( 2.

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

Mathematical Logic I 12 Contents I Zorn


44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

生活設計レジメ

I II III 28 29

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

A

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

: 1g99p038-8

untitled

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

note4.dvi



simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =


II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

I

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

τ τ

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

201711grade1ouyou.pdf

Erased_PDF.pdf


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

newmain.dvi

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

1).1-5) - 9 -

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( )

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

GJG160842_O.QXD

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

数学の基礎訓練I

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

chap9.dvi

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

QMII_10.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

untitled

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2

プログラム

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =


0406_total.pdf

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

研究室ガイダンス(H28)福山研.pdf

液晶の物理1:連続体理論(弾性,粘性)

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

Transcription:

1

URu2Si2 2

(n,l,m) + σ l: 4f (n=4,l=3) 5f (n=5,l=3) d 5 1. S 2. 1. L L=0(S), 1(P), 2(D), 3(F), 4(G), 5(H),... (2S+1) LJ 3

() d ~ > f >> > 1~10 ev 0.1~0.3 ev 1~100 K LS (Russell-Saunders) f 2 less than half-filled f 12 more than half-filled j-j << 4

f 1 (J=5/2) ρe(r) ρm(r) N S Jz 5

J=5/2 = + + + + + ( ) J=5/2 6

(-1) l cf. E-H (-1) l+1 = ( :N, :S) 7

(m>0) l 0 (monopole) 1 (dipole) 2 (quadrupole) 3 (octupole) 4 (hexadecapole) 5 (dotriacontapole) 6 (tetrahexacontapole) 8

f n (Wigner-Eckart) M, M! (x,y,z ) (Jx,Jy,Jz )! 9

Jx, Jy, Jz Jx, Jy, Jz Mathematica Stevens 10

(q~0) (C ) : () ) PrInAg2 : (Γ3) 10 K x 2 -y 2 O. Suzuki et al.: JPSJ 75 013704 '06 11

X X ( 1998 ) X ( ) 4f ψ 2p X cf. X 4f E1 E2 E1 ev 12

(X ) Ce 0.7 La 0.3 B 6 $(IV ) Mannix$et$al.$PRL$95$117206$ 05 L 2 $ $:$2p"5d$(E1),$2p"4f$(E2) T$=$1$K,$Q=(3/2,3/2,3/2) $(Γ 5u ) ψ σ"σ $$:$6 [111] HK$and$Y.$Kuramoto$JPSJ$74$3139$ 05 E2 13

( :) K.$Kuwahara$et$al.$JPSJ$76$(2007)$093702 R.$Shiina$et$al.$JPSJ$76$(2007)$094702 cαm(κ) F(κ) κ Q ( ) κ 14

cf. NMR/NQR xyz z xy y x 15

Hc > Hλ > HCEF J f r (Γ1g) = 16

(Oh) Oh J=5/2 4 O44 () 17

(Oh) () Γk ( ) = (2J+1)^2 ^2 18

Oh Γ3 J=4 19

Oh Γ3 4σz (Γ3 ) 4σx 20

Oh Γ3-18 sqrt(5) σy (Γ3 ) 40sqrt(15) σz 2 Γ3g () Γ3 Γ2u ( ) Γ3g ( ) 2 x 2 1 + 1 + 2 21

Oh Γ3 T. Onimaru et al.: PRL 106 177001 '11 Γ3 ()? 22

D4hx3 U 4+ (J=4) : UX2 (X=P, As, Sb, Bi), PrRu2Si2, UPt2Si2, URu2Si2 (?) J=4 x 3 URu2Si2 23

Oh Γ8 Ce 3+ (J=5/2) : Ce1-xLaxB6 ~ 540 K I. para II. AFQ (Γ5g) TRS III. AFQ (Γ5g) + AFM (Γ4u) IV. AFO (Γ5u) T. Tayama et al.: JPSJ 66 2268 '97 24

Th PrOs4Sb12 Th 4 Oh Γ4 Γ5 Γ4 (t) ~ 10 K Y. Aoki et al.: JPSJ 76 051006 '07 k=5 (θ~0) PrRu4P12 K. Iwasa et al.: PRB 72 024414 '05 AFQ: Γ5g SC AFH: Γ1g (scalar, hexadeca) 25

( ) 2 i j i j J ~ t 2 / U RKKY () i j m1 m2 m1 m2 26

2 (J<0) D(k) k (=Q) -4J D(k) χ(q) (0,0) (π,0) (π,π) (0,0) +4J 27

() (i, x) z : (m) 28

() (Q) T < TN T < TN (0) [ ](0) [] (Q) [] 29

CeB6 R. Shiina et al.: JPSJ 66 1741 '97 Γ3g Γ5g Γ4u Γ4u Γ5u Γ2u NMR M. Takigawa et al.: JPSJ 52 728 83 O. Sakai et al.: JPSJ 66 3005 97 X T. Matsumura et al.: PRL 103 017203 09 ξ(q) (001) (111) (110) σ (Q), η(q) 30

T > Tc T < Tc Γ1g 31

Oh3 Γ1g α = dipole (z), k=0 () O20(Q) Jz(Q) Oxy(Q) Txyz(Q) (C4v Γ4 ) 32

Ce1-xLaxB6 IV HK & Y. Kuramoto: JPSJ 70 1751 '01 K. Kubo & Y. Kuramoto: JPSJ 73 216 04 C44 ( ) 33

(2 ) k 0 () (Holstein-Primakoff ) HK and Y. Kuramoto JPSJ 70 3076 01 R. Shiina et al. JPSJ 72 1216 03 HK et al. JPSJ 78 094713 09 ( ) bi : HP b2 b1 34

T=0 α = 1 35

PrOs4Sb12 Y. Aoki et al.: JPSJ 76 051006 07 R. Shiina et al.: JPSJ 73 3453 04 Q 36

URu2Si2 R. Okazaki et al. Science 331 439 11 & T* M.B. Maple et al. PRL 56 (1986) 185 E. Hassinger, et al. PRB 77 (2008) 115117 37

URu2Si21. E. Hassinger, et al. PRB 77 (2008) 115117 D. Aoki et al. JPSJ 78 (2009) 053701 1st order (Ising ) T0, TN, Tx (HM, HAF) 38

URu2Si22. H. Amitsuka (Private commun.) G.J. Nieuwenhuys PRB 35 (1987) 5260 H c H a T > T* (T* ~ 50 K) H//c : CW H//a : VV Hc2 H. Ohkuni et al Phil. Mag. B 79 (1999) 1045 3D FS 39

URu2Si23. C. Broholm et al. PRB 43 (1991) 12809 T = 1 K Q=(1,0,0) Q=(1,0,0) ( Q=(100)) 40

URu2Si23. AFM A. Villaume et al. PRB 78 (2008) 012504 D. Aoki et al. JPSJ 78 (2009) 053701 0 0.5 1 GPa 41

URu2Si2 cf. Doniach T URu2Si2 Tcoh T* Torder T0 T* T0! QCP 0, AFM () 42

URu2Si2 Y. Kuramoto, 46 (1991) 98 Y. Kuramoto, Physica B 156&157 (1989) 789 NCA cf. DMFT N. Sato et al., JPSJ 54 (1985) 1923 T. Tayama et al., JPSJ 66 (1997) 2268 43

URu2Si2 (NMR) 29 Si NMR T. Kohara et al. Solid State Commun. 59 (1986) 603 5f (HF) 5f 44

URu2Si2 ( 2) G.J. Nieuwenhuys PRB 35 (1987) 5260 U 4+ (5f 2 ) J=4 3 H4 D4h ( ) 500 K 170 K PrRu2Si2 : R. Michalski et al. J. Phys. Condens. Matter 12 (2000) 7609 PrRu2Si2 : A. Mulders et al. PRB 56 (1997) 8752 UPt2Si2 : G.J. Nieuwenhuys PRB 35 (1987) 5260 RRu2Si2 (R=Th,Y,La) + Pr, U : A. Morishita et al. JMMM 310 (2007) 283 50 K cf. Haule-Kotliar LDA + DMFT [ Γ2 - Γ1 (1) ] Nature Phys. 5 (2009) 796; EPL 89 (2010) 57006 45

URu2Si2 170 K Jz> 0, 4 50 K z xy(x 2 -y 2 ) xyz(x 2 -y 2 )! 46

URu2Si2 z () xy(x 2 -y 2 ) () xyz(x 2 -y 2 ) z=0 z=c/2 47

URu2Si2 ( 1) (a) 1.5 (b) 1.5 T N (p) 1 T 0 (p) 1 H 0 (p) T / T 0 H / H 0 AFH 0.5 AFH AFM 0.5 AFM 0 0 0.5 1 1.5 p [GPa] 2 2.5 0 0 0.5 1 1.5 p [GPa] 2 2.5 48

URu2Si2 ( 3) (a) (b) ω ω ζ ζ ζ ζ ζ ζ ζ ζ (101) (100) (100) (110) (101) (100) (100) (110) Jz INS ξ : ξ INS Jz : Jx, Jy () 49

URu2Si2 ( ) Q=(1,0,0) :, H0 Q*=(1,0.4,0) :, cf. F. Bourdarot et al. PRL 90 (2003) 067203 P. Santini et al. PRL 85 (2000) 654 HK, arxiv:1108.4638 50

URu2Si2 X E2 H. Amitsuka, et al. J. Phys. Conf. Series 200 (2010) 012007 51

URu2Si2 AF x 2 -y 2 F H c [110] Oxy [110] O22 [100] Oxy RXS [110] 52