1 c Koichi Suga, ISBN

Similar documents
「産業上利用することができる発明」の審査の運用指針(案)


44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

生活設計レジメ

I II III 28 29

gr09.dvi

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

i


Wide Scanner TWAIN Source ユーザーズガイド

untitled

表1票4.qx4

福祉行財政と福祉計画[第3版]

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

第1部 一般的コメント

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

i 18 2H 2 + O 2 2H 2 + ( ) 3K

第1章 国民年金における無年金

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

橡ミュラー列伝Ⅰ.PDF

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z


II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1

- 2 -


1 (1) (2)

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

provider_020524_2.PDF

Korteweg-de Vries

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

QMI13a.dvi



u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

??



201711grade1ouyou.pdf

178 5 I 1 ( ) ( ) ( ) ( ) (1) ( 2 )

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

°ÌÁê¿ô³ØII

2011de.dvi

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

untitled

pdf

1

newmain.dvi


³ÎΨÏÀ


..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

TOP URL 1

I II III IV V

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

2000年度『数学展望 I』講義録

ii


untitled

i

AccessflÌfl—−ÇŠš1

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2

FX ) 2

FX自己アフリエイトマニュアル

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a



1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

all.dvi

30

数学演習:微分方程式

応用数学III-4.ppt


5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

Transcription:

c Koichi Suga, 4 4 6 5 ISBN 978-4-64-6445- 4

( ) x(t) t u(t) t {u(t)} {x(t)} () T, (), (3), (4) max J = {u(t)} V (x, u)dt ẋ = f(x, u) x() = x x(t ) = x T (), x, u, t ẋ x t u u ẋ = f(x, u) x(t ) = x T x(t ) = x T J x x T J {u(t)} λ(t) ẋ = f(x, u) L = = V (x, u)dt + λ[f(x, u) ẋ]dt [V (x, u) + λf(x, u) λẋ]dt ( ) H(x, u) = V (x, u) + λf(x, u) () L = [H(x, u) λẋ]dt (3)

(3) λẋdt = L L = λxdt [λ(t )x(t ) λ()x()] (4) [H(x, u) + λx]dt [λ(t )x(t ) λ()x()] (5) {u(t)} {u(t) + u(t)} {x(t)} {x(t) + x(t)}. L L = = [ dx + x u [ u du + ] du + λdx dt λ(t )dx T ( x + λ ) ] dx dt λ(t )dx T du dx ± L =. u = t T λ = x t T (iii) λ(t ) = ( x T x(t ) = x T dx T = ) λ (iii) x(t ) = x T dx T =. ẋ = f(x, u) = λ λ H(x, u) = V (x, u) + λf(x, u) {u(t)}, {λ(t)}, {x(t)} u = t T λ = x t T (iii) ẋ = = f(x, u) λ t T (6) (iv) x() = x (v) λ(t ) = ( x(t ) = x T ) 3

x (t),, x n (t) λ (t),, λ n (t) u (t),, u m (t) (iii) (iv) u i = i =,, m t T λi = x i i =,, n t T ẋ i = λ i = f i (x, u) t T (7) x i () = x i (v) λ i (T ) = ( x i (T ) = x T i ), x() = x x(t ) = x T T : u = u λ = λ = x = (iii) ẋ = λ = u (iv) x() = (v) x() = max {u} ẋ = u u dt x() =, x() = H(x, u) = V (x, u) + λf(x, u) = u + λ( u) u = λ u = λ ẋ = λ, λ = x(t) = c λt, λ(t) = c (c, c ) 4

x() = c =., x() =, : x() = λ = λ = c = x (t) = t = t u (t) = λ = max {u} 4 (x + u )dt ẋ = x + u x() =, x() = H(x, u) = V (x, u) + λf(x, u) = 4 (x + u ) + λ(x + u) (iii) u = u + λ = λ = x = x λ ẋ = λ = x + u = u = λ = ẋ = x + λ (iii) u, x λ ẋ = x + λ λ = x λ, A = [ ] r =, r r = r =. 5

i) r = ii) r = [ ] [ = [ v v [ + ] [ + = [ v v v v ] v v ] ] [ ( ] [ ] )v = + v v ( + )v = = [ ] ] [ ( + ] [ ] )v = + v v + ( + )v = = [ x(t) = c e t + c e t λ(t) = c ( )e + ] t c ( + )e x() = x() = c c x() = c + c = x() = c e + c e = t. c = e e e.56, c = e e e.56 : () () u = u λ (3) : x λ (4) (5) x() x(t ) (6) λ u u 6

3 : max {u} ẋ = x + u x() =, : 5xdx u(t) [, 3] x() H(x, u) = V (x, u) + λf(x, u) = 5x + λ(x + u) = (5 + λ)x + λu u = λ λ = = (5 + λ) x (iii) ẋ = λ = x + u (iv) x() = (v) λ() = u. λ > H u = 3 ( ), u (t) = 3. λ = λ 5 λ + λ = 5 e t λe t + λe t = 5e t (λe t ) λe t = 5e t + k (k ) λ (t) = ke t 5 λ () = ke 5 = k = 5e λ (t) = 5e t 5 u (t) = 3 (λ (t) >, t < ) ẋ = x + 3 ẋ x = 3 7

e t ẋe t xe t = 3e t (xe t ) x (t) = ke t 3 x() = ke 3 = k = 5 x (t) = 5e t 3 x() =. ( ) ( ) ( ) T Z T Z x(t ) = Z λ(t ) = x(t ) = x ( ) g(x) λ g(x ) = g(x ) > x λ g(x ) = (tranversality condition) max J = V (x, u)dt {u(t)} s.t.ẋ = f(x, u) x() = x (8) x(t ) 8

L = = V (x, u)dt + [V (x, u) + λf(x, u)]dt + λ[f(x, u) ẋ]dt + µ x(t ) λxdt λ(t )x(t ) + λ()x() + µ x(t ) L x(t ) L = λ(t ) + µ = µ = λ(t ) x(t ) µ x(t ) = λ(t ) x(t ) = : λ (T ) >, x (T ) = λ (T ) =, x (T ) 3 V (x, u)., V (x, u) δ max J = {u(t)} e δt V (x, u)dt (9) max J = {u(t)} e δt V (x, u)dt ẋ = f(x, u) () x() = x x(t ) = x T L = {e δt V (x, u) + λ[f(x, u) ẋ]}dt H(x, u) = e δt V (x, u) + λf(x, u) 9

( ) H c H c (x, u) = V (x, u) + µf(x, u) H c = He δt H = H c e δt µ = λe δt λ = µe δt µ = λe δt 5 e δt c =. u λ = x = c x e δt λ = µe δt λ = µe δt δµe δt c x e δt = µe δt δµe δt µ = c x + δµ (iii) (iv) ẋ = λ = c λ e δt = c µ (v) λ(t ) = µ(t )e δt = = f(x, u) H c (x, u) = H(x, u)e δt = V (x, u) + µf(x, u) λ = µe δt. : (iii) c u = µ = c x + δµ ẋ = c µ (iv) x() = x t T t T = f(x, u) t T () (v) µ(t )e δt = ( x(t ) = x T ) u : x, µ.

4 max J = {u(t)} ẋ = u x() = x() = u e.t dt x (t). H c = u + µu (iii) c u = u + µ = µ = c x ẋ = c µ = u + δµ = +.µ u =.5µ, (iii) ẋ =.5µ. ẋ =.5µ µ =.µ µ µ =. ln µ =.t + k (k ) µ = e.t e k = k e.t ( e k = k ) ẋ =.5k e.t x = 5k e.t + k k x(t) = c + c e.t µ(t) = c e.t x() = x() = c c c + c = c + c e =

c = e 58.9767 c = 58.9767. e x (t) = e + e e.t = e (e.t ) 58.9767 + 58.9767e.t = 58.9767(e.t ). max {u} ẋ = u udt x() =, x() =. max ( x + u ) dt {u} 4 ẋ = x + u x() =, x() = 3. max {u} ẋ = x + u ( x 4 u 9 ) dt x() = 5, x() = 4. max {u} ẋ = x + u (3x u )dt x() =, x() = 5 5. max {u} ẋ = u u e.t dt x() =, x() =