Similar documents
2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a


Z: Q: R: C: sin 6 5 ζ a, b

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

29


構造と連続体の力学基礎

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

all.dvi

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

chap03.dvi


Gmech08.dvi

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

meiji_resume_1.PDF

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si


数学の基礎訓練I

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

I

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

chap1.dvi

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

LLG-R8.Nisus.pdf

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

Bessel ( 06/11/21) Bessel 1 ( ) 1.1 0, 1,..., n n J 0 (x), J 1 (x),..., J n (x) I 0 (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bess

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

di-problem.dvi

Part () () Γ Part ,

di-problem.dvi

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

dynamics-solution2.dvi

RIMS98R2.dvi

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

IA

PDF

振動と波動

II 2 II

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

function2.pdf

Untitled

prime number theorem

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

all.dvi

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)


2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

30

K E N Z OU

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

Note.tex 2008/09/19( )

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

熊本県数学問題正解

.. p.2/5

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de


数学Ⅱ演習(足助・09夏)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

i

第1章 微分方程式と近似解法

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


TOP URL 1

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )


(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

Transcription:

4 14 4 14 4 1

1 4 1.1................................................ 4 1............................................. 4 1.3................................................ 5 1.4 1............................................ 7 1.5............................................ 8 1.6........................................ 9 1.7................................................ 11 1.8.................................................. 11 1.8.1 1 k, k 1................................. 11 1.8. u f(u) u........................ 1 1.8.3 3 3............................... 1 1.8.4 4 4............................... 13 1.8.5 5 5............................... 14 1.8.6 6 Gram-Schmidt........................... 15 1.8.7 7 w.................................... 16 1.8.8 8.................................... 16 1.8.9 9 (1.6.).................................... 16 1.8.1 1................................ 17 1.8.11 11...................... 18 1.8.1 1 (1.8.14).................................. Bessel Kepler 3.1................................................ 3....................................... 4..1.................................. 4......................................... 4.3.............................................. 5.3.1........................................ 5.3. Kepler..................................... 6.4............................................ 7.4.1 Bessel...................................... 7.4. Kepler..................................... 8.4.3 Bessel............................... 3.5........................................ 31.5.1 e 1................................. 31.5. e 1..................................... 33.6................................................ 34

35

3 Contents 1. Tadashi YANO: Quaternions and Spherical Linear Interpolation. Kenji SETO: Bessel Function and Kepler Equation 3. Tadashi YANO: Editorial Comments

4 Quaternions and Spherical Linear Interpolation 1 Tadashi Yano 1.1 1. 1.3 1.4 1.5 1.6 1. 3 4 1 yanotad@earth.ocn.ne.jp 3 interpolation 4 extrapolation

5 Shoemake 1985 [1] 1.3 1.1 x y B y y E (1 t)s C z k 1 y z ts x O k x D x A 1.1: 1 1.: z x y z = k (t)x + k 1 (t)y, t 1 (1.3.1) 5 t k (t), k 1 (t) x y z k (t), k 1 (t) t 1 k (t) = at + b, (1.3.) k 1 (t) = ct + d (1.3.3) a, b, c, d t = z = x t = 1 k () = 1, k 1 () = (1.3.4) z = y k (1) =, k 1 (1) = 1 (1.3.5) 5 t 1

6 k (t), k 1 (t) a, b, c, d k () = 1, k (1) = k 1 () =, k 1 (1) = 1 (1.3.6),(1.3.7),(1.3.8),(1.3.9) 6 (1.3.1) b = 1, (1.3.6) a + b = (1.3.7) d = (1.3.8) c + d = 1 (1.3.9) a = 1, b = 1, c = 1, d = k (t) = 1 t, k 1 (t) = t (1.3.1) z = (1 t)x + ty (1.3.11) k (t) = k, k 1 (t) = k 1 t (1.3.1) 1. z O, A, B, C, D, E 1. DC = OE = k 1 y y EC = OD = k x x 1. z = k x + k 1 y (1.3.1) 1. AB = s AC = ts, CB = (1 t)s EC OA ECB OAB k k x (1 t)s = x s k = (1 t)s s DC OB DAC OAB k 1 k 1 y ts = y s k 1 = ts s (1.3.1) (1.3.13) (1.3.1),(1.3.13) (1.3.1) (1 t)s k =, k 1 = ts (1.3.14) s s (1.3.1) (1.3.14) 6 k (t), k 1 (t) 1

7 1.4 1 1.3 y k 1 y z k x x O B (1 t)θ I y C E H z tθ A F D x G r r 1.3: 1 1.4: x = y = z = r (1.4.1) z = k x + k 1 y (1.4.) k, k 1 7 (1.4.) (1.3.1) (1.4.1) x y θ θ k, k 1 (1.3.14) 8 k, k 1 (1.3.14) s θ θ k = (1 t)θ, k 1 = tθ θ θ (1.4.3) θ (1.4.3) θ t k, k 1 sin (1.4.3) (1 t)θ sin (1 t)θ tθ sin tθ θ sin θ k = sin (1 t)θ sin tθ, k 1 = sin θ sin θ (1.4.4) 7 1.4 k, k 1 1.3 8 x y s x y θ

8 u f(u) u sin tan u f(u) u sin u f(u) u f(u) 1.5 1.5 [] 9 k, k 1 z C x A OB I H 1.4 1 1.4 tθ (1 t)θ AOC COB r 1 tθ (1 t)θ θ = AOB 1.6-1.9 EC OA ECI OAH EC r sin(1 t)θ = x r sin θ EC = OD = k x 11 k = sin(1 t)θ sin θ (1.5.1) z C y B OA G F 1.4 DC OB DGC OFB DC r sin tθ = y r sin θ 1 DC = OE = k 1 y k 1 = sin tθ sin θ 9 [] [3] 1 1.4 k x k 1 y 1.3 11 CI OCI CI = r sin(1 t)θ 1 CG OGC CG = r sin tθ (1.5.)

9 (1.5.1),(1.5.) k = z = sin(1 t)θ, k 1 = sin θ sin tθ (1.4.4) sin θ sin(1 t)θ sin tθ x + sin θ sin θ y (1.5.3) (1.4.4) θ (1.4.3) (1.5.3) (1.3.11) (1.5.3) z z z z = r (1.5.3) 3, 4, 5 1.6 [8] 3 1. a = a 1 a. t a, ( t 1, t : ) 3. a = a + t a x, y 1 1. x, y x y z z = yx 1 13. z ( z) t 14 3. x z(t) = ( z) t x 13 8 [8] 14 (fraction)

1 x, y z x = y = z = 1 15 x, y x = 1, y = cos θ + n sin θ x, y n = in x + jn y + kn z 1 z x z ( z)x = y x 1 z z = yx 1 (1.6.1) ( z) t = (yx 1 ) t = cos tθ + n sin tθ (1.6.) 16 3 x ( z) t x = 1 z = ( z) t x = (cos tθ + n sin tθ) 1 = cos tθ + n sin tθ (1.6.3) z z = Ax + By (1.6.4) A, B x = 1, y = cos θ + n sin θ (1.6.3),(1.6.5) (1.6.6),(1.6.7) A, B z = A + B cos θ + Bn sin θ (1.6.5) cos tθ = A + B cos θ, (1.6.6) sin tθ = B sin θ (1.6.7) sin(1 t)θ A = sin θ sin tθ B = sin θ 15 r r = 1 16 ( z) t z 9

11 x y z z = z (1.5.3) sin(1 t)θ sin tθ x + sin θ sin θ y (1.6.8) 1.7 1 [9] 1.8 1.8.1 1 k, k 1 1.5 x y x y y x P(t) P(t) O z z t z = x + t(y x) 17 z = (1 t)x + ty (1.3.11) k = 1 t, k 1 = t t = y z y x P(t) t(y x) O x 1.5: k, k 1 t = 1 z = x z = y 17 t x y z

1 z = k x + k 1 y (1.3.1) k (t) = 1 t, k 1 (t) = t k () = 1, k 1 () = k (1) =, k 1 (1) = 1 1.8. u f(u) u u f(u) u sin tan u f(u) u [4] u F (u) u sin u, tan u, arcsin u, arctan u, sinh u, tanh u, sinh 1 u, tanh 1 u log(1 + u), e u sin u log(1 + u) 1 + u z z x, y sin tan 1.8.3 3 3 3 3 [5] [6] x y 1.6 z x y 1.7 z = (cos tθ)x + (sin tθ)y (1.8.1) x y x Gram-Schmidt 18 x v x y v w 19 w z x w z = (cos tθ)x + (sin tθ)w (1.8.) w x y (1.5.3) 3 18 6 19 1 r 7

13 w v y (1 t)θ y (1 t)θ z tθ z tθ x x r r 1.6: 3.1 1.7: 3. 1.8.4 4 4 4 [7] y k 1 y z k x (1 t)θ x tθ O y E B (1 t)θ C z tθ A F D x G r r 1.8: 4 1.9: 5 x y z z = k x + k 1 y (1.4.) z x y z x z y 1.8

14 z x tθ z x = r cos tθ (1.8.3) z y (1 t)θ z y = r cos(1 t)θ (1.8.4) (1.4.) z x, y z x = r (k + k 1 cos θ) (1.8.5) z y = r (k cos θ + k 1 ) (1.8.6) (1.8.3),(1.8.5) (1.8.4),(1.8.6) k, k 1 k + k 1 cos θ = cos tθ k cos θ + k 1 = cos(1 t)θ 1 k, k 1 (1.4.4) 1.8.5 5 5 5 [8] 1.8 z = k x + k 1 y (1.4.) 1.9 DC OB DGC OFB OB BF = DC CG (1.8.7) DGC DC = k 1 y CG = r sin tθ OFB OB = y BF = r sin θ 1 y r sin θ = k 1 y r sin tθ DC OB COB = OCD = (1 t)θ k x, k 1 y, z (1.8.8) k x sin(1 t)θ = k 1 y sin tθ (1.8.9) 1 [8] CG 1.9 DGC CG = k 1 y sin θ OGC CG = r sin tθ (1.8.8) r r = y

15 (1.8.8) (1.8.9),(1.8.1) k = k 1 = sin tθ sin θ sin(1 t)θ sin θ (1.8.1) (1.8.11) 1.8.6 6 Gram-Schmidt x y x x v y v = y ax a a v x v x = x y a x = a = x y x θ x y = cos θ v r v r w N w = r N w = Nv N v = w = r N > N = r v = 1 sin θ N = r v = 1 sin θ v = y (cos θ)x v = r sin θ r w w = 1 [y (cos θ)x] (1.8.1) sin θ [8]

16 1.8.7 7 w (1.8.1) (1.8.) y (cos θ)x z = (cos tθ)x + (sin tθ) sin θ = = ( cos tθ sin tθ cos θ sin θ ) x + sin tθ sin θ y sin(1 t)θ sin tθ x + sin θ sin θ y (1.5.3) 1.8.8 8 [1] x y x θ y x y z ( z)x = y (1.8.13) z (1.8.13) x 1 z = yx 1 (1.6.1) z y x 1.8.9 9 (1.6.) (1.6.) z 11 x = 1 x 1 = x x x x = 1, y = cos θ + n sin θ y x = cos θ + n sin θ = e nθ e nθ = cos θ + n sin θ (1.8.14) 3 (1.8.14) ( z) t = (yx 1 ) t = exp[t log(y x)] = exp (tnθ) = exp (ntθ) = cos tθ + n sin tθ (1.6.) 3 (1.8.14) 1

17 1.8.1 1 z = x + iy z = x + iy = re iθ = r(cos θ + i sin θ) (polar form) [11] r = z : z θ = arg(z) : z e iθ = 1 : e iθ 1 1. 1. (quaternion) p p = w + ix + jy + kz p = p p = (w + ix + jy + kz)(w ix jy kz) = w + x + y + z m = p m = p = w + x + y + z p = m p m u = p = W + ix + jy + kz m uū = 1 u = W + X + Y + Z = 1 W = cos θ, X = n x sin θ, Y = n y sin θ, Z = n z sin θ n = n x + n y + n z = 1, n = in x + jn y + kn z

18 u = 1 u = W + ix + jy + kz = cos θ + n sin θ = e nθ p = mu = p e nθ = w + x + y + z e nθ 1.8.11 11 [1] p = w + ix + jy + kz = w + r exp p = exp (w + ix + jy + kz) w ix + jy + kz 1 p exp p = e w exp (ix + jy + kz) exp (ix + jy + kz) = e nθ = cos θ + n sin θ exp p = e w exp nθ (1.8.15) p = q, w = a, ix + jy + zk = v, θ = r = v, n = ix+jy+zk r exp q ( exp q = e a cos v + v ) sin v v w = θ = α, ix+jy+kz r = e w (cos θ + n sin θ) (1.8.15) = v v, [1] p.13 = in x + jn y + kn z = n [13] p.169 9-16 exp p = cos α + n sin α

19 1 p p = p e nθ, n = in x + jn y + kn z p = w + r, r = xi + yj + zk e nθ = w p + r p cos θ + n sin θ = w p + r p w r cos θ = w p, w = p cos θ, n sin θ = r p r = n p sin θ p log p = log p + log e nθ = log p + nθ = log p + n arccos( w p ) θ = arccos w v p. p = q, w = a, n = v [1] p.13 log q = log q + v v arccos a q exp log p = p p t p t = exp (t log p) = exp [t(log p + nθ)] = p t e ntθ p = p e nθ p t = p t e ntθ

1.8.1 1 (1.8.14) e nθ = cos θ + n sin θ (1.8.14) (4) [14] p p = w + r, r = ix + jy + kz r = ix + jy + kz Napir e e ix+jy+kz 4 e ix+jy+kz = cos x + y + z + ix + jy + kz x + y + z sin x + y + z (1.8.16) e ix+jy+kz e ix Maclaurin e ix+jy+kz = 1 + ix + jy + kz 1! + (ix + jy + kz)! + (ix + jy + kz)3 3! + (ix + jy + kz)4 4! (ix + jy + kz) n n =, 3, 4, + (1.8.17) (ix + jy + kz) = (x + y + z ) (ix + jy + kz) 3 = (x + y + z )(ix + jy + kz) (ix + jy + kz) 4 = (x + y + z ) (ix + jy + kz) 5 = (x + y + z ) (ix + jy + kz) (ix + jy + kz) 6 = (x + y + z ) 3 (ix + jy + kz) 7 = (x + y + z ) 3 (ix + jy + kz) (ix + jy + kz) 8 = (x + y + z ) 4 (ix + jy + kz) = (x + y + z ) (1.8.17) (ix + jy + kz) (ix + jy + kz) (ix + jy + kz) [ e ix+jy+kz = 1 (x + y + z ) + (x + y + z ) (x + y + z ) 3 ] +! 4! 6! [ 1 + 1! (x + y + z ) + (x + y + z ) (x + y + z ) 3 ] + (ix + jy + kz) 3! 5! 7! = cos x + y + z ix + jy + kz + x + y + z sin x + y + z r = x + y + z 4 Napir e =.7188188

1 e ix+jy+kz = cos r + ix + jy + kz r sin r (1.8.18) ix + jy + kz = in x + jn y + kn z = n r r = θ (1.8.18) (1.8.18) e nθ = cos θ + n sin θ (1.8.14) e ix+jy+kz = 1 e ix+jy+kz 1 x, y, z 3 r, ϕ, ψ x = r cos ϕ y = r sin ϕ cos ψ z = r sin ϕ sin ψ e r(i cos ϕ+j sin ϕ cos ψ+k sin ϕ sin ψ) = cos r + (i cos ϕ + j sin ϕ cos ψ + k sin ϕ sin ψ) sin r (6) [14] n x = x r = cos ϕ n y = y r n z = z r = sin ϕ cos ψ = sin ϕ sin ψ n x + n y + n z = 1 (14. 4. 1) [1] K. Shoemake, Animating Rotation with Quaternion Curves, Computer Graphics, 19(3), (1985) 45-54 []

[3] http://marupeke96.com/dxg_no57_shearelinearinterwithoutqu.html [4] M. R. Spiegel, 1995 111-11 [5] S. R. Buss, 3D Computer Graphics: A Mathematical Introduction with Open GL (Cambridge University Press, 3) 1-15 [6] http://en.wikipedia.org/wiki/slerp [7] Y. S. Kim, http://www.purose.net/~y-kim/ [8] F. Dunn and I. Parberry, 3D, 8 17-176 [9] 7 [1] F. Dunn and I. Parberry, 3D, 8 167-168 [11] http://rip9455.wordpress.com/1/8//quaternions [1] http://en.wikipedia.org/wiki/quaternion [13] F. Dunn and I. Parberry, 3D, 8 169-17 [14] (1.3) 14-4

3 Bessel Kepler Bessel Function and Kepler Equation 5 Kenji Seto 6.1 Bessel 1),),3) Bessel 3 Bessel Bessel Friedrich Wilhelm Bessel (1784-1846) Bessel Kepler Bessel Bessel 174 Daniel Bernoulli (17-178) Riccati Bernoulli Bessel 4) Euler, Lagrange, Fourier, Poisson Bessel 184 Bessel Kepler Bessel Hankel, Lommel, Neumann, Schläfli Bessel Kepler Kepler..3 Kepler.4 Bessel Kepler Bessel.5 Kepler 5 6 seto@pony.ocn.ne.jp

4...1 (x, y) r (r, θ) r r θ e r, e θ e r, e θ x, y i, j t e r = cos θ i + sin θ j, e θ = sin θ i + cos θ j (..1) de r dt = dθ dt e θ, de θ dt = dθ dt e r (..) dr/dt r = re r (..) dr dt = dr dt e r + r dθ dt e θ (..3) d r dt = d r dt e r + dr dθ dt dt e θ + r d θ ( dθ ) er dt e θ r (..4) dt d r dt [ d = r ( dθ ) ] dt r e r + 1 dt r d ( dt r dθ dt ) e θ (..5)...1 F 1, F P a, ae ( e < 1).1 P F 1 P r, F 1 P θ F P a r P D F DP (ae + r cos θ) + (r sin θ) = (a r) (..6) r = l 1 + e cos θ, l = a(1 e ) (..7)

5 e l θ = π/ r a b b = a 1 e l l = b /a e 1 C DP a Q CQ ϕ ϕ θ ϕ (..7) r cos ϕ = ae + r cos θ a (..8) (..7) cos ϕ = e + cos θ 1 + e cos θ cos θ = cos ϕ e 1 e cos ϕ (..9) (..1) r cos ϕ (..1) cos θ sin θ r = a(1 e cos ϕ) (..11) sin θ = 1 cos θ = 1 e sin ϕ 1 e cos ϕ (..1) sine n θ = nπ ϕ nπ θ, ϕ.3.3.1 M m G m d r dt (..5) r θ (.3.3) = GMm r e r (.3.1) d r ( dθ ) dt r GM = dt r (.3.) d ( r dθ ) dt dt r dθ dt = (.3.3) = Const. h (.3.4) h h/

6 r, θ t r θ θ d r dt = d dt (.3.) dr dt = dθ dr dt dθ = h dr r dθ ( h dr ) r = dθ dθ dt h r d dθ d dθ ( h dr ) r = h d dθ r dθ ( h dr ) r dθ (.3.5) (.3.6) ( h dr ) ( h ) GM r r = dθ r r (.3.7) h /GM l h GM (.3.8) d ( l dr ) ( l ) dθ r dθ r 1 = (.3.9) l r 1 = ζ (.3.1) l dr = dζ (.3.11) r ζ (.3.9) d ζ dθ + ζ = (.3.1) e, δ r r = ζ = e cos(θ δ ) (.3.13) l 1 + e cos(θ δ ) (.3.14) (..7) F 1 δ θ.1 A δ.3. Kepler t (.3.4) t ht = θ r dθ (.3.15) t θ δ = (.3.14) r ht = θ l ( 1 + e cos θ ) dθ (.3.16)

7 (.3.15) θ ϕ (..1) sin θdθ = (1 e ) sin ϕ dϕ (.3.17) (1 e cos ϕ) (..1) sin θ 1 e dθ = dϕ (.3.18) 1 e cos ϕ r ϕ (..11) (.3.15) ht = a ϕ 1 e (1 e cos ϕ )dϕ (.3.19) ht = a 1 e (ϕ e sin ϕ) (.3.) a b b = a 1 e S S = πab = πa 1 e, h/ T (.3.) T T = πa 1 e h ϕ e sin ϕ = πt T (.3.1) (.3.) Kepler Kepler Johannes Kepler(1571-163) Sir Isaac Newton(164-177) Kepler Tycho Brahe (1546-161) Kepler Kepler Kepler Newton Joseph-Louis Lagrange(1736-1813) Kepler 14 177.4 (.3.) t ϕ ϕ Bessel 1817.4.1 Bessel Bessel Bessel exp[(z/)(t 1/t)] Taylor [ z exp t ( 1 )] [ = t k= 1 k! ( zt ) k ][ l= 1 ( z ) l ] l! t t Laurent = [ n= m= ( 1) m z ) n+m ] m!(n + m)!( t n + [ n=1 m= (.4.1) ( 1) n+m z ) n+m ] t m!(n + m)!( n (.4.)

8 1 t n n n Bessel J n (z) = m= ( 1) m z ) n+m (.4.3) m!(n + m)!( n J n (z) = m= ( 1) m z ) n+m = m!( n + m)!( m=n [ z ( exp t 1 )] = t ( 1) m z m!( n + m)!( = m= n= Bessel ) n+m ( 1) n+m z ) n+m = ( 1) (n + m)!m!( n J n (z) (.4.4) J n (z)t n (.4.5) (.4.5) t n+1 t 1 Cauchy πij n (z) πij n (z) = 1 [ z ( t n+1 exp t 1 )] dt (.4.6) t t ϕ t = e iϕ 7 J n (z) = 1 π e i(nϕ z sin ϕ) dϕ (.4.7) π π [ π, ] [, π] [ π, ] ϕ J n (z) = 1 π π cos(nϕ z sin ϕ)dϕ (.4.8) Bessel Bessel ϕ sin ϕ Kepler.4. Kepler Kepler (.3.) τ τ πt T (.4.9) ϕ e sin ϕ = τ (.4.1) n τ = nπ ϕ nπ ϕ, τ ϕ τ ϕ ϕ + π, τ τ + π ϕ τ π ϕ τ Fourier-sine ϕ τ = A n sin(nτ) (.4.11) n=1 7 e e, e

9 sin(mτ) τ sine A n π sin(nτ) sin(mτ)dτ = π δ n,m (.4.1) A n = π π (ϕ τ) sin(nτ)dτ (.4.13) τ =, π ϕ τ A n = π π cos(nτ) ( dϕ )dτ n dτ 1 = π π cos(nτ) n dϕ dτ (.4.14) dτ Kepler (.4.1) τ ϕ A n = πn π cos[n(ϕ e sin ϕ)]dϕ (.4.15) (.4.8) Bessel ϕ ϕ = τ + A n = n J n(ne) (.4.16) n=1 Bessel n J n(ne) sin(nτ) (.4.17) ϕ cos ϕ ϕ cos ϕ = B + B n cos(nτ) (.4.18) n=1 Fourier-cosine B τ πb = π cos ϕ dτ = τ cos ϕ π π + τ sin ϕ dϕ dτ (.4.19) dτ τ = π ϕ π Kepler τ ϕ πb = π + π (ϕ e sin ϕ) sin ϕ dϕ (.4.) B = e (.4.1) n 1 B n (.4.18) cos(mτ) cosine π cos(nτ)dτ =, π cos(nτ) cos(mτ)dτ = π δ n,m, n, m 1 (.4.) π B n = π cos(nτ) cos ϕ dτ (.4.3) Kepler τ ϕ Bessel B n = 1 n[ Jn 1 (ne) J n+1 (ne) ] (.4.4)

3 cos ϕ cos ϕ = e + n=1 1 [ Jn 1 (ne) J n+1 (ne) ] cos(nτ) (.4.5) n (..11) r ) r = a (1 + e 1 [ ae Jn 1 (ne) J n+1 (ne) ] cos(nτ) (.4.6) n θ cos θ (..1) cos θ = 1 ( 1 e ) e + 1 e 1 e cos ϕ Kepler (.4.1) τ n=1 dϕ dτ = 1 1 e cos ϕ (.4.17) τ (.4.7) (.4.7) (.4.8) 1 1 e cos ϕ = 1 + J n (ne) cos(nτ) (.4.9) cos θ = e + (1 e ) e (.4.17) (.4.5) n=1 J n (ne) cos(nτ) (.4.3) n=1.4.3 Bessel (.4.9) τ = ϕ Bessel 1 + J n (ne) = 1 1 e (.4.5) τ = 1 Jn 1 (ne) J n+1 (ne) n[ ] = 1 + e n=1 Bessel n=1 (.4.31) (.4.3) e J n 1 (z) J n+1 (z) = d dz J n(z) (.4.33) n=1 n J n(ne) = e + e 4 (.4.34) (.4.31) (.4.3) Kapteyn 5),6) (.4.34) 3 n 3 e 1 e < 1 e > 1 e < 1 1 < e

31.5.5.1 e 1 13 11 1 11 9. e 1 F 1, F P. ae(e > 1) F P F 1 P a F 1 P r F P a + r F 1 P θ θ.1 P D F DP (ae r cos θ) + (r sin θ) = (a + r) (.5.1) l r = 1 + e cos θ, l = a(e 1) (.5.) π/ π θ θ θ θ < θ < θ cos θ = 1/e (.5.3) ϕ (..9) cosh ϕ = cos θ + e 1 + e cos θ (.5.4) θ ( θ, θ ) ϕ (, ) (.5.) cos θ = cosh ϕ e 1 e cosh ϕ (.5.5) r = a(e cosh ϕ 1) (.5.6) (..11) (.5.5) sin θdθ = (e 1) sinh ϕ dϕ (.5.7) (1 e cosh ϕ)

3 (.5.5) sin θ sin θ = 1 cos θ = e 1 sinh ϕ e cosh ϕ 1 (.5.8) (.5.7) dθ = e 1 dϕ (.5.9) e cosh ϕ 1 (.3.4) (.5.6) r a e 1(e cosh ϕ 1)dϕ = hdt (.5.1) e sinh ϕ ϕ = τ (.5.11) τ ht τ = a e 1 (.5.1) (.5.11) Kepler e < 1 1 < e τ ϕ ϕ ϕ τ τ e ϕ Fourier-cosine 8 K(k) e ϕ = K(k) = π K(k) = πk K(k) cos(kτ)dk (.5.13) Kepler τ ϕ K(k) = πk (.5.13) e ϕ = π 1 [ k e ϕ cos(kτ)dτ (.5.14) e ϕ sin(kτ) dϕ dτ (.5.15) dτ e ϕ sin [ k(e sinh ϕ ϕ) ] dϕ (.5.16) e ϕ sin [ k(e sinh ϕ ϕ ) ] dϕ ] cos(kτ)dk (.5.17) ϕ Bessel ϕ k k 8 e e, e

33.5. e 1.3 Bessel e 1 l F F P FP r F FP θ.3 r = l 1 + cos θ, π < θ < π (.5.18) (.3.14) e = 1, δ = (.3.4) r t ht = θ l (1 + cos θ ) dθ (.5.19) t F (.5.18) r z = tan(θ/) (.5.) dθ = dz (.5.1) 1 + z r = l (1 + z ) (.5.) τ l (1 + z ) dz dt = h (.5.3) l ( z + 1 3 z3) = ht (.5.4) z 3 + 3z = τ (.5.5) τ = 3h l t (.5.6)

34 (.5.5) Kepler 3 Cardano z = ( τ + 1 + τ ) 1/3 ( τ + 1 τ ) 1/3 (.5.7) (.5.) r r = l [ ( τ + 1 + τ ) /3 + ( τ + 1 τ ) /3 1 ] (.5.8) r.6 Kepler θ ϕ Kepler Bessel ϕ Bessel Kepler Bessel = 1) G.N.Watson, A Treatise of the Bessel Functions, nd ed. Cambridge Univ. Press. (1966). ) (1954). 3) (196). 4) 3 1 (13.3) -8. 5) A. Erdéli et.al., Higher Transcendental Functions, Vol., Bateman Manuscript Project, McGraw-Hill Book Co. Inc. (1953) p.13. 6) 3 (196), pp. 13-14.

35 3 3 (14.4.16)