τ τ

Similar documents
プログラム

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

2 0 B B B B - B B - B - - B (1.0.6) 0 1 p /p p {0} (1.0.7) B m n ϕ : B ϕ(m) n ϕ 1 (n) = m /m B/n 1.1. (1.1.1) a a n > 0 x n a x r(a) a r(r(a)) = r(a)

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

Note.tex 2008/09/19( )

本文/目次(裏白)

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

TOP URL 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

: , 2.0, 3.0, 2.0, (%) ( 2.

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

第86回日本感染症学会総会学術集会後抄録(I)

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

TOP URL 1

抄録/抄録1    (1)V

構造と連続体の力学基礎

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

研修コーナー

パーキンソン病治療ガイドライン2002

TOP URL 1

D 24 D D D

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

基礎数学I

keisoku01.dvi


D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

newmain.dvi

Super perfect numbers and Mersenne perefect numbers /2/22 1 m, , 31 8 P = , P =

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t


LLG-R8.Nisus.pdf

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

支持力計算法.PDF

untitled

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

untitled

untitled

untitled

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π


Z: Q: R: C: sin 6 5 ζ a, b

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

untitled


untitled

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

ver Web

四変数基本対称式の解放

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

陦ィ邏・2

/02/18

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


第1章 微分方程式と近似解法

量子力学 問題


日本医科大学医学会雑誌第7巻第2号

2012 A, N, Z, Q, R, C


日本内科学会雑誌第102巻第4号

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

( ) ± = 2018

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

77

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

untitled

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

OHP.dvi

all.dvi

総研大恒星進化概要.dvi

0406_total.pdf

201711grade1ouyou.pdf

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

~nabe/lecture/index.html 2

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

TOP URL 1

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

数学Ⅱ演習(足助・09夏)

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

Transcription:

1 1 1.1 1.1.1 τ τ

2 1 1.1.2 1.1 1.1 µ ν M φ ν end ξ µ ν end ψ ψ = µ + ν end φ ν = 1 2 (µφ + ν end) ξ = ν (µ + ν end ) + 1

1.1 3 6.18 a b 1.2 a b 1.1.3 1.1.3.1 f R{A f } A f 1 B R{AB f 1 } COOH A OH B 1.3 A 3 B 2 C O H + HO CH 2 C O CH 2 + H 2 O O O ph 1839 C.Goodyear C-S-S-C

4 1 1.3 1.4 R{A 3 } 1.4 3 1.1.3.2

1.1 5 1.5 a 1.5 b C n H 2n+1 n = 12 25 ABA 1.5 c 1.5 d κ- 1.5 e

6 1 1.5 1.2 M w = (1.1) 1.2.1 R{AB f 1 } A B m m- m- 1.6

1.2 7 Cayley 1.6 AB 3 B p B α A p B (f 1)α α 0 α 1/(f 1) m- m A (f 1)m B m 1 A m 1 B B (f 1)m (m 1) = fm 2m + 1 m- A 1.6 A m- A m- A m- f m N m / j N j N m m- f m = ω mα m 1 (1 α) fm 2m+1 (1.2) ω m m m- m 1 m fm m B m 1 B fm m C m 1 = (fm m)!/(m 1)!(fm 2m + 1)! A (m 1)! m! ω m = (fm m)! m!(fm 2m + 1)! (1.3)

8 1 f m = 1 α α ω mβ m (1.4) β = α(1 α) f 2 (1.5) M N m = N (f 1)αN = N[1 (f 1)α] (1.6) A 1.4 < m > n = 1 1 (f 1)α (1.7) < m > w = 1 (f 1)α2 [1 (f 1)α] 2 (1.8) α = α 1/(f 1) A 1 A 1.2.2 R{A f } 1940 P.J.Flory W.H.Stockmayer N m- A 2(m 1) A fm 2(m 1) = fm 2m + 2 1.7 fn(1 α) m- P m = [(f 2)m + 2]N m /[fn(1 α)] (1.9) l 1 ω m P m = ω mα m 1 (1 α) fm 2m+1 (1.10) N m = N f(1 α)2 ω m β m (1.11) α

1.2 9 1.7 A 3 β 1.5 ω m ω m (fm m)!/m!(fm 2m + 2)! (1.12) A (fn)α/2 1 M N m M = N (fn)α/2 = N(1 fα/2) (1.13) f m N m /M f m = f(1 α)2 α(1 fα/2) ω mβ m (1.14) < m > n = 1 1 fα/2 (1.15) w m mn m / mn m w m = f(1 α)2 mω m β m (1.16) α < m > w = 1 + α 1 (f 1)α (1.17) α α = 1/(f 1) α (1.18)

10 1 < m > n = 2(f 1)/(f 2) 1.8 α 1.8 A f ω m ω m k X S k m k ω mβ m, m=1 S k X m k ω m β m m S 0 = S 0 = α 1 α, S 1 = α(1 fα/2) f(1 α) 2, S 1 = α (1 α)[1 (f 1)α], S 2 = α f(1 α) 2, S 2 = α[1 (f 1)α 2 ] (1 α)[1 (f 1)α] 3 α(1 + α) f(1 α) 2 [1 (f 1)α] 1.16 1.17 m m α = lim 2(m 1)/fm = 2/f (1.19) m α α α w G

1.2 11 α = (2/f)w G + α (1 w G ) w G = (f 1)α 1 1 2/f (1.20) α = 1/(f 1) α = 2/f 1 α = 1 α = α 1.9 S 1.9 S F w G = 1 (1 α)2 α (1 α ) 2 α (1.21) α α α β α(1 α) f 2 α α β = α(1 α) f 2 = α (1 α ) f 2 (1.22) α 1.16 β α α w m w S = m 1 w m = (1 α)2 α (1 α ) 2 α (1.23) 1.21 α α α α = α w S + α w G (1.24)

12 1 α 2/f 1.9 1.10 w G α = 0.5 z- 1.8 1.10 A 3 1.2.3 f R{A f } N f 1.11 f = 1, 2, N f N fn f Ψ w f fn f / fn f (1.25) f n fn f / N f = ( wf /f) 1 (1.26) f w f 2 N f / fn f = fw f (1.27) m = (m 1 m 2 ) f m f

1.2 13 1.11 m= (1, 1, 1, 2, 3, 0, 1) 1.11 1.11 m = (1, 1, 1, 2, 3, 0, 1) m N(m) α ( ) ( fm f m f )! N(m) = fnf ( fm f 2 m f + 2)! α Σm f 1 (1 α) Σfm f 2Σm f +2 (w f ) m f m f! f 1 (1.28) fm fm f 1/m! (wf ) m f /m f! fmf w = f w(1 + α) 1 (f w 1)α (1.29) (f w 1)α = 1 (1.30) f = 2 1 f( 3) (m 2, m f ) m 2 = l m f = n N lm = ( fnf ) (l + fm m)! (fm 2n + 2)! αl+m 1 (1 α) fm 2m+2 wl 2 w m f l! m! (1.31) w f w 2 = 1 ρ N lm = ( (1 α)2 fn f ) ρα = ρ ω lm η l ζ m (1.32)

14 1 η ζ η (1 ρ)α (1.33) ζ ρα(1 α) f 2 (1.34) ρ = 0 ρ = 1 f M N lm M = N 2 + N f α }{{} 2 (2N 2 + fn f ) }{{} monomers cross links (1.35) f w = fρ + 2(1 ρ) = (f 2)ρ + 2 1.30 [(f 2)ρ + 1]α = 1 1.2.4 n f = n n 1 αn γ (1.36) γ α 0 γ crosslink index β α(1 α) n 2 γe γ n 1 ω m = (nm m)! m!(nm 2m + 2)! nm w m n2 γ m(γe γ ) m (1.37) γe γ γ γ = 1 (1.38) 1 1

1.3 15 1.23 w m = m 1 f(1 α)2 S 1 (α ) (1.39) α w S = γ /γ, w G = 1 γ /γ (1.40) α γ β α β = α (1 α ) f 2 γ n e γ S 1 (α ) = α f(1 α ) 2 γ n 2 1.3 1.3.1 f A R{A f } g B R{B g } A B R{A f }/R{B g } A B A B 1.12 1.12

16 1 α 1.13 1.13 f (f 1) (f 1)α = 1 (1.41) 1.14 1.14 R{A f }/R{B g } AB 1.15 A f /B g

1.3 17 A p B q 1.15 A A α = p(g 1)q (f 1)p(g 1)q = 1 (1.42) R{A f }/R{A 2 }/R{B 2 } AB 1.16 A f /A 2 /B 2 1.16 R{A f } A A ρ R{A f } R{A f } α = p{q(1 ρ)p} i qρ = i=0 p q ρ 1 p q(1 ρ) (1.43) (f 1)α = 1 [(f 2)ρ + 1]p q = 1 (1.44) A A 2 A f A f w f w = 2(1 ρ) + fρ = (f 2)ρ + 2 (f w 1)p q = 1 (1.45) A 2 ρ = 1 α = p q (f 1)p q = 1 A B p = q α = p 2 ρ/[1 p 2 (1 ρ)]

18 1 1.3.2 A f /B g f R{A f } N A g R{B g } N B Ψ A = fn A Ψ B = gn B A B 1952 A l B m λn l,m = (fl l)!(gm m)! l!m!(fl l m + 1)!(gm l m + 1)! xl y m (1.46) λ 1.48 (l, m) = (1, 0) (0, 1) x y x = λfn 10, y = λgn 01 (1.47) A B fn 10 p Ψ A (1 p) f x x = λψ A (1 p) f y = λψ B (1 q) g x y p q A Ψ A p B Ψ B q γ λ A + B A B λ = Ψ A p Ψ A (1 p)ψ B (1 q) = Ψ B q Ψ A (1 p)ψ B (1 q) λψ A = q/(1 p)(1 q) (1.48) x = y = q (1 p)(1 q) (1 q(1 p)f p)f 1 = 1 q p (1 p)(1 q) (1 p(1 q)g q)g 1 = 1 p (1.49) (1.50) γ γ = λψ A Ψ B (1 p)(1 q) (1.51) A B λ p = γ/ψ A q = γ/ψ B γ = λψ A Ψ B (1 γ/ψ A )(1 γ/ψ B ) (1.52) γ γ λγ = 1 {1 + λ(ψ A + Ψ B ) [1 2λ(Ψ A + Ψ B ) + λ 2 (Ψ A Ψ B ) 2 ] 1/2} 2

1.3 19 λ 0 λψ A C A λψ B = C B λγ = 1 2 { 1 + C A + C B [1 2(C A + C B ) + (C A C B ) 2 ] 1/2} w(c A, C B ) γ N S lm N lm = Ψ A /f + Ψ B /g γ (1.53) N lm M A M B A B M w (M A l + M B m) 2 N lm / A l + M B m)n lm (1.54) lm l,m(m [ (f 1)pM 2 B + (g 1)qMA 2 M w = + 2M ] pq AM B 1 (f 1)(g 1)pq + q f M A 2 + p g M B 2 q f M A + p g M B (1.55) 1.42 (f 1)(g 1)pq = 1 (1.56) 1.3.3 A B f R{A f } N A f B N B g Ψ A = fn A f Ψ B = gn B g (f = 1, 2, ) g (g = 1, 2, ) A B w A f fna f /Ψ A w B g gn B g /Ψ B p, q 1952 ( fl f l f )!( gm g m g )! λn(l, m) = ( fl f l f m g + 1)!( gm g l f m g + 1)! ( l x f ) f ( m y g ) g (1.57) l f! m f g g!

20 1 x f y g x f w A f q(1 p) f 1, y g wg B 1 q p(1 q) g 1 1 p (1.58) λ λ p Ψ A Ψ A (1 p)ψ B (1 q) = q Ψ B Ψ A (1 p)ψ B (1 q) (1.59) f w fw A f, g w gw B g (1.60) M A M f w A f, M B M g w A g (1.61) 1.55 f g f w g w M A /f M B /g M A /f M B /g MA 2 /f M B 2 /g Mf 2wA f /f Mg 2 wg B /g (f w 1)(g w 1)p q = 1 (1.62) 1.3.4 1.17 B R{B g } g B A g B A B

1.3 21 k m g j k wf A w f wg B p k p k A k A g w = kp k µ w µ w k 1.18 lf = (k 1)j k + 1 flf = kj k (1.63a) (1.63b) 1.57 p(1 p)q(1 q) q 1 N(j, l) = ( ( ) ( ) fn f ) jk 1! lf 1! f (w f ) l f l f! k (p k ) j k j k! (1.64) 1962 (f w 1)(µ w 1) = 1 (1.65) A/B α = (g w 1)pq 1.42 q = 1 (g w 1)p (k 1)p k α = µ w 1 k k 1 α = k 1(k 1)p k = µ w 1 (1.66) 1.181.65

22 1