compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

Similar documents
i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

main.dvi

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

( ) (, ) ( )


Twist knot orbifold Chern-Simons

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

LLG-R8.Nisus.pdf

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

Dynkin Serre Weyl

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

70 : 20 : A B (20 ) (30 ) 50 1

OCAMI

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

xia2.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

201711grade1ouyou.pdf

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

I

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

液晶の物理1:連続体理論(弾性,粘性)

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

_TZ_4797-haus-local

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

function2.pdf

keisoku01.dvi

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

数学の基礎訓練I

2 2 L 5 2. L L L L k.....

高校生の就職への数学II

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

TOP URL 1

untitled


tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

85 4

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

TOP URL 1

1).1-5) - 9 -

Note.tex 2008/09/19( )

Bruhat

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

untitled

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

第86回日本感染症学会総会学術集会後抄録(I)

The Physics of Atmospheres CAPTER :

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,


重力方向に基づくコントローラの向き決定方法

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

SUSY DWs

第3章 非線形計画法の基礎

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

第5章 偏微分方程式の境界値問題

SFGÇÃÉXÉyÉNÉgÉãå`.pdf


#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

Kullback-Leibler

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

図 : CGC 回転面. 左の図は 正の場合の平行曲面として得られる平均曲率 一定回転面 ダラネーアンデュロイド 上 とノドイド 下, 中の図は その平行正 CGC 回転面 右の図は負 CGC 回転面 ミンディング曲面と呼 ばれる 図 2: 回転面でない位相的な円柱面 螺旋対称性を持つ. ダラネー

等質空間の幾何学入門

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

1

Transcription:

014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1

(1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β Σ α, β α Z. Σ Σ Σ a W (Σ) Σ Weyl Γ = {X a λ, X π Z (λ Σ)} Γ Σ ([4]) a r = λ Σ{H a λ, H πz} a r a a r a r Σ Affine Weyl W (Σ) {(s λ, nπ λ) λ Σ, n Z} λ O(a) a 1.. Affine Weyl W (Σ) P 0 a = sp 0 s W (Σ) Π Σ Σ α P 0 P 0 = {H a λ, H > 0 (λ Π), α, H < π} m : Σ R 0 1 λ Σ, s W (Σ) m(λ) = m( λ) = m(sλ) 1 Σ λ, µ Σ λ = µ m(λ) = m(µ)

m(λ) λ Σ H a [7] m H = m(λ) cot( λ, H )λ a, λ Σ +, λ,h π Z F (H) = m(λ) log sin( λ, H ), λ Σ +, λ,h π Z Vol(H) = exp( F (H)) > 0 m H H,Vol(H) H 1.3. Σ a H a σ = (s, X) W (Σ) H = σh Vol(H ) = Vol(H), m H = sm H 1.4. Σ a H a m H = 0 1.5. H a austere { λ cot( λ, H )( m(λ)) λ Σ +, λ, H π Z} 1 H H asutere austere 1.6. Σ a H a austere H Σ = BC 1 = {±e 1, ±e 1 }, m(e 1 ) = m(e 1 ) H = te 1, tan t = Π { α} P 0 P0 λ, H > 0(λ Π), P0 λ, H = H P 0 { = 0(λ Π), < π ( α ), α, H = π ( α ) - - 3

P 0 P 0 = Π { α} P 0 H P 0 (gradf )(H) = m H 1.7. [7] P0 H P 0 H P 0 H G compact Lie (G, F ) compact M = G/F compact π : G M G Lie g g = f p a p λ a g C g(a, α) g(a, α) = {X g C [H, X] = 1 λ, H X (H a)} λ Σ m(λ) Σ = {λ a {0} g(a, α)} m(λ) = dim g(a, α) Σ a Σ g a x M F - F x F x ([4]) G = F (exp a)f x = π(exp H) (H a) F π(exp H) λ, H πz (λ Σ) H.1. F π(exp H) H.. F π(exp H) H 4

Harvey-Lawson[5] M austere M L A L ξ A ξ 1 1 L austere austere Harvey-Lawson[5] austere Bryant[] Euclid austere [10] compact (s- ) austere Kπ(exp H) austere H austere.3. [8] Σ compact λ, λ Σ m(λ) > m(λ) 1.6.3.4. [8] M = G/F compact Rimann F - austere Leung[15] Riemann Riemann M ( ) austere.5. compact M = G/F 1.7 austere.6. [7] P0 Kπ(exp H) P 0 H F π(exp H) H P 0 F π(exp H) 5

P 0 H Kπ(exp H) 3 3.1. a, ( Σ, Σ, W ) a (symmetric triad) (1) (6) (1) Σ a () Σ( a) span(σ) (3) W 1 a Σ = Σ W. (4) Σ W l = max{ α α Σ W} Σ W = {α Σ α l}. (5) α W, λ Σ W (6) α W, λ W Σ α, λ α s αλ W Σ. α, λ α s αλ Σ W. Σ a span(σ) = a a span(σ) span(σ W ) span{ Σ} = a span(σ) = a a ( Σ, Σ, W ) { Γ = X a λ, X π Z } (λ Σ) Γ 6

a a r a r = λ Σ,α W {H a λ, H πz, α, H π + πz} a r, a a r a r 3.. {(s λ, nπ λ λ) λ Σ, n Z} {(s α, (n+1)π α α) α W, n Z} O(a) a a ( Σ, Σ, W ) Affine Weyl W ( Σ, Σ, W ) (s λ, nπ λ) λ, H = nπ, (s λ α, (n+1)π α, H = n+1 π α α) 3.3. Affine Weyl W ( Σ, Σ, W ) P 0 a = sp 0 s W ( Σ,Σ,W ) Σ Π Σ + Π Σ + = Σ Σ +, W + = W Σ + Σ = Σ + ( Σ + ), W = W + ( W + ) Σ Π P 0 = H a P 0 0 < λ, H (λ Π), λ, H < π (λ Σ + W + ), λ, H < π (λ Σ + W + ), π < α, H < π (α W + Σ + ) 3.4. α W + P 0 = {H a α, H < π }, 0 < λ, H (λ Π)., Π { α} λ, H > 0 (λ Π), P0 λ, H = H P 0 { = 0 (λ Π ), < π ( α ), α, H = π ( α ), 7

P 0 P 0 = ( ). Π { α} P 0 3.5. ( Σ, Σ, W ) a R + = {x R x 0} m, n : Σ R + (1) m(λ) = m( λ), n(α) = n( α) m(λ) > 0 λ Σ, n(α) > 0 α W. () λ Σ, α W, s W (Σ) m(λ) = m(sλ), n(α) = n(sα) (3) σ W ( Σ), λ Σ n(λ) + m(λ) = n(σλ) + m(σλ) (4) λ Σ W, α W α,λ α α,λ α m(λ) = m(s α λ), m(λ) = n(s α λ). m(λ), n(α) λ, α ( Σ, Σ, W ) H a m H = λ Σ+ λ,h π Z m(λ) cot( λ, H )λ + n(α) tan( α, H )α. α W + α,h π Z m H H F (H) = m(λ) log sin( λ, H ) n(α) log cos( α, H ) λ Σ+ λ,h π α W + Z α,h π Z Vol(H) = exp( F (H))(> 0) H 3.6. ( Σ, Σ, W ) a H a, σ = (s, X) Affine Weyl H = σh a Vol(H ) = Vol(H), m H = sm H 3.7. ( Σ, Σ, W ) a H a m H = 0 8

3.8. (1) H P 0 (grad F )(H) = m H () H, H 1 P 0 (H H 1 ) d F (H + t HH dt 1 ) t=0 > 0. 3.9. Π { α} H P0 3.10. ( Σ, Σ, W ) a H a austere { λ cot( λ, H ) ( = m(λ)) λ Σ +, λ, H π Z} {α tan( α, H ) ( = n(α)) α W +, α, H π Z} a 1 3.11. (1) austere () austere 3.1. H a austere (1) λ, H π Z λ (Σ W ) (W Σ) () H Γ Σ W (3) m(λ) = n(λ) λ, H π + π Z λ Σ W 4 4 compact (G, F 1, F ) compact M i = G/F i G Riemann, M i G- compact F M 1 Hermann F 1 = F Hermann 9

Hermann M 1 F F M 1 Â M 1 F - Â Â Hermann F i G θ i π 1 : G M 1 θ i θ i G Lie g g = f 1 p 1 = f p a p 1 p A = exp a G Â = π 1(A) Hermann ([6]) G = F AF 1 3 M 1 F - F \G/F 1 a F \G/F 1 = a/ H 1 H F π 1 (exp H 1 ) = F π 1 (exp H ) θ 1 θ = θ θ 1 (A), (B), (C) (A) G θ 1 θ G (B) ( [14]) U compact Lie, σ U G = U U θ 1 (g, h) = (h, g), θ (g, h) = (σ(g), σ(h)) 3 [1, Theorem 4.1] G compact Lie G τ Cartan σ τ [13, Theorem 6.16] G Lie g σ τ g = h k + q k + h p + p q a p q K, H k, h G A = exp a G = KAH 10

(C) U compact Lie, σ U G = U U θ 1 (g, h) = (h, g), θ (g, h) = (σ 1 (h), σ(g)). (B) F (θ, G) = F (σ, U) F (σ, U) M 1 = U (a, b) x = axb 1 (x U, a, b F (σ, U)) (C) Hermann σ- F (θ, U) = {(g, σ(g)) g U} M 1 = U σ- U U g x = gxσ(x) 1 (A),(B),(C) compact (G, F 1, F ) a ( Σ, Σ, W ) θ 1 θ g = (f 1 f ) (p 1 p ) (f 1 p ) (f p 1 ). α a g C g(a, α) g(a, α) = {X g C [H, X] = 1 α, H X (H a)} Σ = {α a {0} g(a, α) {0}} ɛ = ±1 g(a, α) g(a, α, ɛ) g(a, α, ɛ) = {X g(a, α) θ 1 θ X = ɛx} g(a, α) θ 1 θ - g(a, α) = g(a, α, 1) g(a, α, 1). Σ = {α Σ g(a, α, 1) {0}}, W = {α Σ g(a, α, 1) {0}} λ Σ α W m(λ) = dim C g(a, λ, 1), n(α) = dim C g(a, α, 1) 11

4.1. ( Σ, Σ, W ) a. 4 G 1 F 1 G 1 = F (θ 1 θ, G), F 1 = {g G 1 θ 1 (g) = g} G 1 F 1 Lie g 1 = (f 1 f ) (p 1 p ), f 1 = f 1 f compact (G 1, F 1 ) a Σ 5 Hermann (G, F 1, F ) (A),(B),(C) compact a ( Σ, Σ, W ) Hermann H a F π 1 (exp H) Affine Weyl W ( Σ, Σ, W ) F \G/F 1 P 0 P 0 5 F \G/F 1 = P0 F π 1 (exp H) H 5.1. F π 1 (exp H) 5.. P0 F π 1 (exp H) P 0 H F π 1 (exp H) H P 0 F π(exp H) 4 (G, F 1, F ) ( Σ, Σ, W ) (A) (B) (G, F 1, F ) ( Σ, Σ, W ) (C) (G, F 1, F ) G ( Σ, Σ, W ) Vogan ([13]) 5 1

P 0 H F π 1 (exp H) Hermann austere 5.3. F (exp H) austere H austere [10] M 1 Riemann L M 1 x L ξ T x L M 1 σ ξ L σ ξ (x) = x, (dσ ξ ) x ξ = ξ, σ ξ (L) = L (dσ ξ ) 1 x A ξ (dσ ξ ) x = A ξ austere austere s- austere Hermann austere 6 g compact Lie J g {0} (adj) 3 = adj G = Int(g) M = G J g G-, G K K = {k G k J = J} K Lie k k = {X g [J, X] = 0} g m m = Im adj g = k m ( ). 13

g e πadj (+1)- ( 1)- k m J m K- M = G/K compact Hermite compact Hermite L M L M τ L M Lagrange compact (compact Hermite ) ([, Lemma 4.1]) compact Hermite compact [16], [18] G I τ I τ : G G; g τgτ 1 G I τ F (I τ ) (G, F (I τ )) compact g g = l p J k p ([, Theorem 4.3]) p a J a a (G, F (I τ )) R 6.1 L al (a G) a = exp H (H a) 6.1. [11] L al (a = exp H) H L al = M a = W (R)J W (R)J L W (R) M a = W (R)J ([1]) M a L L W (R) ([19]) S L x, y S s x (y) = y s x x L -number # L # L Chen- ([3]) 14

6. L 1, L M L L i i g L 1 L M compact Hermite I τ1 I τ (τ 1 τ G ) compact I τ1 I τ p 1 p a J a compact (G, F (I τ1 ), F (I τ )) ( Σ, Σ, W ) a p i p i compact (G, F (I τi )) a i R i L 1 al (a G) a = exp H (H a) 6.. L 1 al (a = exp H) H L 1 al = W ( Σ)J = W (R 1 )J a = W (R )J a W ( Σ)J W ( Σ) 6.3. L 1 al (a = exp H) a = a 1 Σ = R 1 L 1 al = W (R 1 )J L 1 [1] R. Bott, The geometry and representation theory of compact Lie groups, Representation theory of Lie groups, (1970), 65 90, London Math. Soc. Lecture Note Ser. 34. [] R. L. Bryant, Some remarks on the geometry of austere manifolds, Bol. Soc. Bras. Mat., 1 () (1991), 133 157. 15

[3] B.-Y.-Chen and T. Nagano, A Riemannian geometric invariant and its applications to Borel and Serre, Trans. Amer. ath. Soc. 308 (1988), 73 97. [4] D.Hirohashi, O. Ikawa and H. Tasaki, Orbits of isotropy groups of compact symmetric spaces, Tokyo J. Math. 4 (001) 407 48. [5] R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math., 148 (198), 47 157. [6] E. Heintze, R. S. Palais, C. Therng and G. Thorbergsson, Hyperpolar actions on symmetric spaces, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 14 45. [7] D. Hirohashi, H. Tasaki, H. Song and R. Takagi, Minimal orbits of the isotropy groups of symmetric spaces of compact type, Differntial geometry and its applications 13 (000) 167 177. [8] O. Ikawa, The geometry of symmetric triad and orbit spaces of Hermann actions J. Math. Soc. Japan 63 (011), 79 136. [9] O. Ikawa, A note on symmetric triad and Hermann action, Proceedings of the workshop on differential geometry and submanifolds and its related topics, Saga, August 4 6, 01, 0 9. [10] O. Ikawa, T. Sakai and H. Tasaki, Weakly reflective submanifolds and austere submanifolds, J. Math. Soc. Japan 61 No. (009) pp. 437 481. [11] O. Ikawa, M. Tanaka and H. Tasaki, The fixed point set of a holomorphic isometry, the intersection of two real forms in a Hermitian symmetric space of compact type and symmetric triads, in perparation. [1] M. F.-Jensen, Spherical functions on a real semisimple Lie group, Journal of functional analysis 30, 106 146 (1978). [13] Anthony W. Knapp, Lie groups beyond an introduction, Birkhäuser. 16

[14] N. Koike, Examples of certain kind of minimal orbits of Hermann actions, Hokkaido Math. J. 43 (014), 1 4. [15] D. S. P. Leung, The reflection principle for minimal submanifolds of Riemannian symmetric spaces, J. Differential Geometry, 8 (1973) 153 160. [16] D. S. P. Leung, Reflective submanifolds. IV, Classification of real forms of Hermitian symmeric spaces, J. Differential Geom., 14 (1979), 179 185. [17] T. Matsuki, Classification of two involutions on compact semisimple Lie groups and root systems, J, Lie Theory, 1 (00), 41 68. [18] M. Takeuchi, Stability of cretain minimal submanifolds of compact Hermitian symmetric spaces, Tohoku Math. Journ. 36 (1984), 93 314. [19] M. Takeuchi, Two-number of symmetric R-spaces, Nagoya Math. J. 115 (1989), 43 46. [0] H. Tamaru, The local orbit types of symmetric spaces under the actions of the isotropy subgroups, Differential Geom. Appl. 11 (1999), no. 1, 9 38. [1] M. S. Tanaka and H. Tasaki, The intersection of two real forms in Hermitian symmetric spaces of compact type, J. Math. Soc. Japan 64 (01), 197 133. [] M. S. Tanaka and H. Tasaki, Antipodal sets of symmetric R-spaces, Osaka J. Math. 50 (013), 161 169. [3] M. S. Tanaka and H. Tasaki, The intersection of two real forms in Hermitian symmetric spaces of compact type II, to appear in J. Math. Soc. Japan. [4] M. S. Tanaka and H. Tasaki, Correction to: The intersection of two real forms in Hermitian symmetric spaces of compact type, to appear in J. Math. Soc. Japan. 17