LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

Similar documents

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

c 2009 i

08-Note2-web

chap1.dvi


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

pdf

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

DE-resume

Gmech08.dvi

sikepuri.dvi

keisoku01.dvi

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

振動と波動

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

TOP URL 1

dynamics-solution2.dvi

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

数学演習:微分方程式

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

2 0.1 Introduction NMR 70% 1/2

IA

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ


genron-3


TOP URL 1

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

I 1

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

4‐E ) キュリー温度を利用した消磁:熱消磁


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1 c Koichi Suga, ISBN

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

0406_total.pdf

Note.tex 2008/09/19( )

SO(2)

29

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx


dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

x ( ) x dx = ax

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

Z: Q: R: C: sin 6 5 ζ a, b

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

ohp_06nov_tohoku.dvi

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

( ) ( )


2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1


Korteweg-de Vries

2011de.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt


y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

数値計算:常微分方程式

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

December 28, 2018

chap03.dvi


Xray.dvi

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

meiji_resume_1.PDF


4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

構造と連続体の力学基礎

85 4

Chap10.dvi

DVIOUT

Transcription:

338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt

7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x t = xt 3 t sin t = cos t 2 sin t = sin t, 2 t t +α 12.5.1 y = gt t sinω 0 t + δ t f gt = f y y = ω 0 cosω 0 t + δ, cos t = sin t 2 cos t = cos t 2 t y t cosω 0 t + δ t = f gt gt gt t = ω 0 sinω 0 t + δ x t = ω 2 0 xt 2 2 xt = A sinω 0 t + δ xt = a sin ω 0 t + b cos ω 0 t A, δ a, b x0 x 0 x0 = x 0, x 0 = v 0 xt = v 0 ω 0 sin ω 0 t + x 0 cos ω 0 t 2 x y = yx y k = k y x k y n + a n 1 y n 1 + + a 1 y + a 0 y = b k = 1, 2,, n 1 n b n xt t 2

340 7 7.3.1.2 vt = x t F F = bv b > 0 F + F m 2 x = k x bv 2 x = ω 2 t 2 t 2 0 x 2µv b 2µ = m µ x = v, 2 x = v t t 2 t t x = v x 0 1 x = t v = ω2 0 x 2µv t v ω 2. 0 2µ v 0 1 A = ω 2 0 2µ v s s A u x v P v e x 2 v p p + O e 1 x x u x v x v = xe1 + ve 2 e 1, e 2 x v OP x OP = = xe v 1 + ve 2 p + = Pe 1, p = Pe 2 OP = s p + + u p = spe 1 + upe 2 = sp 1 + up 0 0 = P 1 s u

7.3 341 x s = P v u P p+ p = Pe1 Pe 2 = P e1 e 2 = PI = P P = p+ p p +, p A Ap + = λ + p +, Ap = λ p λ ± Ap = λp p 0 A λi = 0 A λi = λ 1 ω 2 0 2µ λ = 0 λ2 + 2µλ + ω 2 0 = 0 λ = µ ± µ 2 ω 2 0 = λ ± λ ± p ± = p q 0 λ± 1 p A λ ± I p ± = = 0 λ 2µ λ ± q ± p + q = 0 p ± = p q 1 ω 2 0 λ ± P = 1 1 p + p = λ + λ, D = P 1 λ+ 0 AP = 0 λ P P = a b t c a b s = as + bu as = t + bu t c u t cs + u cs t + u t a b s = t a b s c u = t c t u x v = P s u t P s = P u t s u

342 7 x v = P s u x x = A P s s = AP s s = P 1 AP t v v t u u t u u s s = D s λ+ s = t u u t u λ u t s = λ +s t u = λ u s, u e 2.4.3 t at = a t log e a, t et = e t, t eλt = λe λt a a = e log e a e e s t = λ + st u t = λ ut st = ae λ +t, ut = be λ t a, b λ 1 ω 2 0 2µ λ 2 2 x t 2 + 2µ x t + ω 2 0 x = 0 = λ 2 + 2µλ + ω 2 0 = 0 x = e λt 2 e λt t 2 + 2µ eλt t + ω 2 0 eλt = λ 2 + 2µλ + ω 2 0 eλt = 0 λ = λ ± λ

7.3 343 v = x t x, v 1 3 x s 1 1 ae λ+t ae = P = v u λ + λ be λ t = λ +t + be λ t aλ + e λ +t + bλ e λ t exp x = e x e λ ±t = exp µ ± µ 2 ω 2 0 t xt = ae λ +t + be λ t µ ω 0 > 0 µ ω 0 < 0 0 > µ 2 ω 2 0 = ω2 2.4.3 e λ ±t = e µ±iω t = e µt e ±iωt ω = xt = ae λ +t + be λ t = e µt cos ωt ± i sin ωt ω 2 0 µ2 = e µt {a + b cos ωt + ia b sin ωt } 3 t 5.3.2.2 x x x = A A t v v t I v = t 1 ω 2 0 2µ t x = 0 v x = e λt λ 1 e λt ω 2 0 2µ λ λe λt = 0 e λt λe 0 λt y = yx n y k = y k x k = 1, 2,, n 1 y, y 1, y 2,, y n 1 1 n y = e λx n

344 7 x0 = x 0, v0 = x 0 = 0 a, b v0 = aλ + + bλ λ ± = µ ± iω x0 = x 0 = a + b v0 = 0 = µa + b + iωa b a = x 0 2 i µx 0 2ω, b = x 0 2 + i µx 0 2ω i x0 = x 0, v0 = 0 xt = x 0 e µt {cos ωt + µ ω sin ωt } 7.3.2 7.3.2.1 LCR 2 R V V R V I

7.3 345 V I = V/R V = RI 0 V 0 0 2 V RI = 0 2 Q V C Q = CV C C Q = CV C Q V = Q/C I V I I L V = L I t t I L L R C LCR S V 0 2 0 V 0 C Q/C L L I RI t R I S L V 0 I C

346 7 0 0 V 0 Q C L I t RI = 0. S I Q I = Q = Q = I t = t t Q 2 L 2 Q t 2 + R Q t + Q C = 0 L 2µ = R/L ω 2 0 = 1/LC 2 Q t 2 + 2µ Q t + ω 2 0 Q = 0 7.3.1.2 x µ < ω 0 Q0 = Q 0 I0 = 0 344 x Q Qt = Q 0 e µt {cos ωt + µ sin ωt } ω µ = R 2L, ω = ω 2 0 µ2 = 1 L 1 c 2 R2 4. 7.3.2.2 LC LCR LCR V 0 cos ω t 2 V 0 cos ω t Q C L I t 2 Q t 2 + 2µ Q t RI = 0 + ω 2 0 Q = v 0 cos ω t 2µ = R/L, ω 2 0 = 1/LC, v 0 = V 0 /L R I L I C

7.3 347 Q = Qt 2 5.2.4 1 Q 1, Q 2 2 Q 1, Q 2 Q 1 Q 2 Q 1, Q 2 : Q t = ae λ +t + be λ t λ ± = µ ± µ 2 ω 2 0. Qt ω Q t = a 1 cos ω t + b 1 sin ω t a 1, b 1 L 2 Q t 2 + R Q t + Q C = V 0 cos ω t a 1, b 1 Qt Q t Q t = Qt + iq t Qt iq t L 2 iq t t 2 + R iq t t + iq t C = V 0 i sin ω t Q t L 2 Q t t 2 + R Q t t + Q t C = V 0 e iω t Qt Qt = Re Q t Q t Q t = ce iω t

348 7 Lω 2 + irω + 1 ce iω t = V C 0 e iω t c = c Q t = ce iω t = V 0 e iω t Lω 2 + irω + 1 C V 0 Lω 2 + irω + 1 C Qt Q t I = Q t I t = I t = = iω V 0 e iω t V Lω 2 + ir + 1 = 0 e iω t R + i Lω C 1 V 0 R i Lω 1 cos ω t + i sin ω t R 2 + Lω 1 2 V 0 R 2 + Lω 1 2 Z = R + i Lω 1, Z = R = Z cos ϕ, Lω 1 R cos ω t + Lω 1 sin ω t R 2 + Lω 1 2 = Z sin ϕ 1.4.3 3 I t = V 0 Z R 2 + Lω 1 2 cos ϕ cos ω t + sin ϕ sin ω t = V 0 Z cosω t ϕ Z Z

7.3 349 AM LCR ω I t I t Z = R + i Lω 1 R LC I t = V 0 Lω 1 cosω t ϕ Lω = 1 LCω 2 = 1 I t LC LC 20 1898 1906 AM AM 1.4.4.3 LC L C v t = V + v t cos ω t 1.4.4.3 C variable conenser LC ω 2 = 1 L C ω = 1 LC LC v