Einstein ( ) YITP

Similar documents
TOP URL 1

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

TOP URL 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1


Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

arxiv: v1(astro-ph.co)

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =


: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

TOP URL 1

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

untitled

『共形場理論』


2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB

,,..,. 1

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

Part () () Γ Part ,

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

Z: Q: R: C: sin 6 5 ζ a, b

(Maldacena) ads/cft

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

main.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,


SUSY DWs

A


.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

05Mar2001_tune.dvi

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

0406_total.pdf

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


2017 II 1 Schwinger Yang-Mills 5. Higgs 1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

液晶の物理1:連続体理論(弾性,粘性)

YITP50.dvi

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

本文/目次(裏白)

総研大恒星進化概要.dvi

gr09.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

IA

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

TOP URL 1

量子力学A

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

( ) (ver )

構造と連続体の力学基礎

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ


高校生の就職への数学II

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

第86回日本感染症学会総会学術集会後抄録(I)

Note.tex 2008/09/19( )

3 exotica

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

量子力学 問題

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

重力と宇宙 新しい時空の量子論


1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

CKY CKY CKY 4 Kerr CKY

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T

untitled

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

D.dvi

201711grade1ouyou.pdf

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

QMII_10.dvi

Microsoft PowerPoint _9JPS_Tanaka_reduced_

H.Haken Synergetics 2nd (1978)

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

keisoku01.dvi

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

( ) ,

30

中央大学セミナー.ppt

Transcription:

Einstein ( ) 2013 8 21 YITP

0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass = m2 2 (h µνh µν h 2 ), (2) ( + m 2 )h µν η µν ( + m 2 )h µ λ h λν ν λ h λµ + µ ν h + η µν λρ h λρ = 0,

Bargman- Wigner ( + m 2 )h µν = 0, h = 0, µ h µν = 0, (3) (Fierz-Pauli ) 4 h µν m 5

Fierz-Pauli 1. (BD ghost) vector propagator Proca 2. (BD) 3. graviton (vdzv ) energy-momentum tensor trace Boulware-Deser(1972) Arkani-Hamed- Georgi-Schwarz(2003) 2010 De Rham massive

drg, drgt de Rham-Gabadaze (2010), de Rham-Gabadaze-Tolly (2011) Galileon FP 5 graviton ADM Hamilton BFV Deser partially-massless massive

FP vdvz FP Propagator 1 p 2 m 2 ( 1 2 η µα η νβ + 1 2 η µβ η να 1 ) 3 η µν η αβ, η µν = η µν + p µp ν. m 2 ( ) Feynman-like gauge graviton propagator 1 p 2 ( 1 2 η µαη νβ + 1 2 η µβη να 1 ) 2 η µνη αβ, m 2 0 2

1. singular 1/m 2 factor 2. 1/2 1/3 (van Dam-Veltman (1970) and Zakharov (1970)) Fierz-Pauli propagator( T 2 ) Fierz-Pauli < T h(x)h αβ (y) >= η µν < T h µν (x)h αβ (y) > 0. < T µ xh µν (x)h αβ (y) > 0. transverse (T T U 0 Proca )

propagator de Donder (harmonic gauge) µ h µν 1 2 νh = 0, + 1 2α ( µ h µν 1 2 νh) 2, α + F.T. F µν,αβ = A(p 2 )δ µν,αβ + B(p 2 )η µν η αβ + C(p 2 )η µν p α p β +D(p 2 )η αβ p µ p ν + E(p 2 )(η µα p ν p β + η µβ p ν p α + η να p µ p β + η νβ p µ p α ) +F (p 2 )p µ p ν p α p β

d = 4 F (p 2 ) = p 2 + 1 1 2α 1 4α p2 +m 2 + 4 α 1 2 p 2 2α m 2 α 2α 1 ( 1 2α p2 m 2 )( 2α 1 2 α p 2 3m 2 ) 1 4α p2 +m 2 1 p 2 m 2, α + f(p 2 ) 2 1 1 3m 2 p 2 m 2, vdv

L m = m2 2 [hµν h µν bh 2 ], (4) b = 1 Fierz-Pauli ( + M 2 )( + m 2 )h µν = 0, (5) ( + M 2 )h = 0, (6) µ h µν = a ν h, (7) M parameter a, d M 2 = db 1 (d 2)(1 b) m2, (8)

b (m, M) 2 Tachyon free condition 1 d b < 1, (9) 4 1/4 b < 1. a = 1 Fierz-Pauli FP

1. η µν 2 Fierz-Pauli ( BD, ) L (2) m = m2 2 [hµν h µν 1 2 h2 ], (10) 2. 1 Einstein 1 η µν 3. ds AdS massless (Higuchi 1987, Witten 1990?)

4. η µν g µν Boulware-Deser(1972)

( ) 1. Fierz-Pauli mass term 6 Fierz-Pauli BD g 2. 1 gauge symmetry scalar BRS invariance 5 kugo-ojima 3. 4. BD Weyl Weyl

Dirac-Uchiyama-Freund g µν Weyl W µ, φ Weyl Dirac 1973, Uchiyama 1973, Freund 1974, Padmanabhan 1987 S 0 = a S 1 = +b d D x 1 [ g 2 d D x 1 gg µν 2 +c d D x 1 4e d D x gφ 2D D 2, g µν µ φ ν φ 1 ] (D 2) 4(D 1) Rφ2 ( µ 1 ) 2 (D 2)W µ φ gφ 2(D 4) D 2 g µν g λρ f µλ f νρ, ( ν 1 ) 2 (D 2)W ν φ

S 2 = ξ d D x gφ 2 [ R + 2(D 1)g λρ λ W ρ + (D 1)(D 2)g λρ W λ W ρ ] ( ) Weyl g µν = e 2Λ(x) g µν, (11) W µ = W µ µ Λ(x), (12) φ = e 1 2 (D 2) φ, (13) free a b c ξ S 0 + S 1 + S 2 = a d D x 1 2 gg µν µ φ ν φ

( + ξ 1 ) (D 2) 8(D 1) a d D x gφ 2 R ( +2(D 1) ξ + 1 ) (D 2) 8 D 1 (a a) ( +(D 1)(D 2) ξ + 1 D 2 8D 1 (a a) +c d D x gφ 2D D 2 + d D x ( 1 4 d D x 1 2 gφ 2 g µν µ W ν ) d D x gφ 2 g µν W µ W ν ) gφ 2(D 4) D 2 g µν g λρ f µλ f νρ, (D 2) a ξ ξ 1 8 (D 1) a a = a + b

BRS Weyl BRS Kugo-Ojima G.C.T BRS δ = δ δx µ µ, δx µ = κc µ. δg µν = κ µ C λ g λν κ ν C λ g µλ, δw µ = κ µ C λ A λ, δφ = 0, δc µ = 0, δ C µ = ib µ, δb µ = 0, Weyl BRS GCT δ W g µν = 2C(x)g µν, δ W W µ = µ C(x), δ W φ = 1 (D 2)C(x)φ, 2 δ W C(x) = 0, δ W C = ib, δ W B = 0, otherwies = 0,

Unitary (Einstein ) Weyl Einstein gauge φ = const. = M p D 2 2, G.C.T. ( iδ ) d D x C(φ D 2 M p 2 ) = d D D 2 x(φ M p 2 )B+i d D x C( ) D 2 φc, 2 FP ghostc Nakanishi-

Lautrap B FP anti-ghost C = ( iδ d D x ) g C(φ D 2 M p 2 ) d D x D 2 g(φ M p 2 )B + i M p D 2 2 ) + i d D x C( ) D 2 φc, 2 d D x g CDC(φ (C C Hayashi-Kugo [] )

Einstein S Einstein = ξ D 2 M p d D x D gr + cm p d D x g 1 4e M D 4 p gg µν g λρ f µλ f νρ ( + d D x(d 1)(D 2) ξ + 1 ) D 2 8D 1 a D 2 M p D 2 +M p d D x ( µ ( g µν ) B ν + iκ g µν φ 2 µ Cλ ν C λ) +i d D x C( ) D 2 M (D 2)/2 p C, 2 d D x gg µν W µ W κ = M p 2, Λ cosm. = 2cM p 2

ξ Einstein ( ) massive 5 graviton 2 massless massive 3 Weyl Weyl Tachoyon Einsitein Plank mass Weyl W µ Einstein W µ Weyl

5. Boulware-Deser g g L m (a) = m2 K 2λ ( g ) 1+a, a = 0 η µν + Kh νν L (1) m (a) = 1 (1 + a)m2 2 K λ ( ) 1+a η η µν h µν = 1 (1 + a)m2 2 K λh,

L (2) m (a) = 1 4 (1 + a)m2 λ ( ) [ 1+a η (a + 1)η µν η ρλ η µρ η νλ η µλ η νρ] = 1 [ 2 (1 + a)m2 λ h µν h µν 1 + a 2 h2], a = +1 Fierz-Pauli a = 0 (K.S., 2005, hepth/0501042, ) 1 d 1 + a 2 1, 2 d d a 1,

4 1 2 a 1, a = 1 g 1 2 2

BD L m (a i ) = m2 K 2λ(a i) ( g ) 1+ai, L m = L m (a i ) = m 2 K 2λ(a i) ( ) 1+ai g, i i λ(a i ) a i λ(a i ) λ(a i ) L m = m2 K 2 da λ(a) ( ) 1+a g, (14)

1 η µν + Kh νν L (2) m = L (1) m = da 1 (1 + a)m2 2 K λ(a)h, da 1 ] 4 (1 + a)m2 λ(a) [(a + 1)h 2 h µν η µν, λ(a) da (1 + a)λ(a) = 0,

1 da (1 + a)λ(a) 0, da (1 + a) 2 λ(a) = 2 da (1 + a)λ(a), Firez-Pauli ( [ 1 2, 1) )

2 a = ā λ(a) = λ 0 e 1 (a ā) 2 2 σ 2, 2πσ L m = + da m2 λ 0 K 2 e 1 (a ā) 2 ( ) 2 1+a σ 2 g 2πσ = m2 ( ) 1+ā 1 K 2λ 0 g e2 (σ log g) 2 g Liouville ( )

3 λ(a) δ a i Riemann λ(a) λ(a) = λ i δ(a a i ) + λ(a), i a i = 0 Fierz-Pauli Kimura, Hamamoto ASG mix

4 y a = my y 5 λ(y) 5 ( ) 5 G MN = ( ( g) α 0 0 ( g) β g µν ),

Friedman Friedman L m = 1 da λ(a ) ( ) 1+a g, κ δl m = 1 κ da 1 2 (1 + a )λ(a ) ( g ) a gg µν δg µν, L = da 1 2 (1 + a )λ(a ) ( g ) a

FLRW ( ) ds 2 = c 2 dt 2 + a(t) 2 dσ 2, dσ 2 = dr2 1 Kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ), a Hubble H = ȧ a, Friedman H 2 = 8πG 3 ρ c2 K a 2 + c2 Λ 3 c2 3 L, 3H 2 + 2Ḣ = 8πG c 2 P c2 K a 2 + c2 λ c 2 L,

ä a = 4πG 3 ( ρ + 3P ) c 2 + c2 3 Λ c2 3 L, w = P ρc 2, Ḣ = 4πG(1 + w)ρ + c2 K a 2, Λ L

FLRW g = a 3 r2 sin θ, 1 Kr 2 L = 1 2 (1 + a )λ( g) a = 1 ( 2 (1 + a )λ a 3 r2 sin θ 1 Kr 2 ) a, a = 1 Fierz-Pauli Friedman a 3 Gauss

enhance

6 BD 1 FP BD residual Deser-Waldron h µν = h µν + ( µ ν g µν ) Φ, Φ = 0 Einstein Gravity Weyl Einstein Dirac-Utiyama-Freund Stueckelberg 2

Weyl Stueckelberg φ a g µν = η ab µ φ a ν φ b + KH µν, FP(Feddeev-Popov) (derham ) Izawa BRS FP i C µν (2η ab µ φ a ν C b ), (derham )

Izawa s Procedure Stueckelberg (φ ) g µν = η ab µ φ a ν φ b + Kh µν, Stueckelberg φ a Izawa s procedure (g µν, θ λ ) (g µν = g µν (η ab µ φ a ν φ b + Kh µν ), φ a ) BRS BRS topological field theory δg µν = 0, δh µν = C µν, δφ a = C a, δ C µν = ib µν,

Stueckelberg Gauge fixing FP ghost terms ] iδ[ Cµν (η ab µ φ a ν φ b + Kh µν ) B µν (η ab µ φ a ν φ b + Kh µν ) = i C µν (2η ab µ φ a ν C b µ θ ν + ν θ µ ), B µν FP ( ) Weyl K Dirac-Utitama-Feund Weyl φ κ

λ(a) Einstein Weyl try-and-error ( 5 ) Friedman Ḣ Weyl Stuecklberg ( )