T07M cm 3 cm/sec FreeFEM++ FreeFEM++

Similar documents
D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

JFE.dvi

第5章 偏微分方程式の境界値問題

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

FA FA FA FA FA 5 FA FA 9

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

untitled

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

28 Horizontal angle correction using straight line detection in an equirectangular image

udc-2.dvi

Untitled

Note.tex 2008/09/19( )

161 J 1 J 1997 FC 1998 J J J J J2 J1 J2 J1 J2 J1 J J1 J1 J J 2011 FIFA 2012 J 40 56

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

4/15 No.

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Fig. 1 Experimental apparatus.

FA

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

ISSN ISBN C3033 The Institute for Economic Studies Seijo University , Seijo, Setagaya Tokyo , Japan

02-量子力学の復習

橡

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

16_.....E...._.I.v2006

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

空間多次元 Navier-Stokes 方程式に対する無反射境界条件

TOP URL 1

2 ( ) i

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:


IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

KENZOU Karman) x

GPGPU

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

h23w1.dvi

untitled

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat


J. Jpn. Inst. Light Met. 65(6): (2015)

NO

2007-Kanai-paper.dvi

04-“²†XŒØ‘�“_-6.01

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter


Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

空力騒音シミュレータの開発

A 99% MS-Free Presentation

浜松医科大学紀要

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

2012専門分科会_new_4.pptx

29 Short-time prediction of time series data for binary option trade

21 Effects of background stimuli by changing speed color matching color stimulus

( ) ,

kiyo5_1-masuzawa.indd

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Core Ethics Vol.

外国文学論集14号.indd


IPSJ SIG Technical Report An Evaluation Method for the Degree of Strain of an Action Scene Mao Kuroda, 1 Takeshi Takai 1 and Takashi Matsuyama 1

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

Vol. 5, 29 39, 2016 Good/Virtue actions for competitive sports athlete Actions and Choices that receive praise Yo Sato Abstract: This paper focuses on

The Study of Combination of Pitches in College Baseball Keita Kikuchi 1), Nobuyuki Nakajima 2), Hirohito Watada 3) The purpose of this study was to an

08-Note2-web

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

首都直下地震における地方財政への影響

24 Depth scaling of binocular stereopsis by observer s own movements

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

22 Google Trends Estimation of Stock Dealing Timing using Google Trends

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

52-2.indb

_’¼Œì

Kansai University of Welfare Sciences Practical research on the effectiveness of the validation for the elderly with dementia Naoko Tsumura, Tomoko Mi



[1] 2 キトラ古墳天文図に関する従来の研究とその問題点 mm 3 9 mm cm 40.3 cm 60.6 cm 40.5 cm [2] 9 mm [3,4,5] [5] 1998

”Лï−wŁfl‰IŠv‚æ89“ƒ/‚qfic“NŸH

dvi

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing


A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut


ABSTRACT The movement to increase the adult literacy rate in Nepal has been growing since democratization in In recent years, about 300,000 peop

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

Transcription:

T7M7 4 1 cm 3 cm/sec FreeFEM++ FreeFEM++

Dynamics of rotating column put in fluid T7M7 Makoto NOJI Advisor Tutomu IKEDA Graduate Course of Applied Mathematics and Informatics Graduate School of Science and Technology Ryukoku University Abstract In recent years, breaking pitches in a family of non-rotating balls attract marked attention of people such as a knuckleball of baseball and a non-rotating shot of football. The purpose of the present paper is to clarity why such a non-rotating ball moves unpredictably by numerical computation. Because of the restricted ability of a software utilized for calculation of fluid dynamics and the restriction from computation time, the ball is replaced with a column and a two-dimensional numerical computation is performed. Moreover, a value of 4 was assumed for the Reynolds number, which corresponds to the column 1cm diameter moving in the water at about 3cm/sec. We assume that the column can rotate with an arbitrary speed, and we adopt the FreeFEM++ for calculating the velocity and presure fields of moving fluid. Moreover, the lift and drag acting on the column are computated also by using the FreeFEM++. We note that the lift and drag are decided by corresponding area integration in order to keep the accuracy of numerical calculation. Our numerical computations consist of two parts. In the first part, although the lift and drag act on the column, we fix the center of the column and calculate the lift. We find that the lift oscillates by the effect of the Karman vortex appearing behind the column. Moreover, the period and amplitude of oscillation of the lift is independent of the rotation speed of the column while the average of the absolute value of lift increases with the rotation number. In the second part, the dynamics of the column by the lift are numerically computed in the situation where the center of the column can move only in the direction perpendicular to the stream line. We note that the effects of drag are not taken into account still. In our numeral simulation the column is released after the flow field becomes periodic in time. The result is as follows : 1. the column moves more rapidly as the rotation speed becomes higher. 2. the dynamics depends on the timing of release for the slowly rotating column, while it dose not for the rapidly rotating column.

T7M7 21 1 28

1 1 2 1 2.1......................... 2 3 2 3.1............................ 2 3.2............................. 4 3.3......................... 6 4 7 4.1..................... 8 4.2..................... 8 5 1 6 1 7 12 8 22 8.1.......................... 22 8.2............................ 24 8.3.............. 25 8.4................ 27 9 34 1 39 11 42 12 43

1,.,,.. ([9]).. ([7]),. ([7]).,. ([7]).. ([5]).. 2,. 1 2.,. 2. 2,. 3..,. 4.,. ([4]). ([3]),,. ([3]),. ([3]) 1

2.1.. ([3]),.,..,.,.,... 3 3.1,. G. Ω. 1, 25. G. G Ω. Ω. Ω = G γ i γ o γ w (1) γ i, γ o, γ w. 1. ([3]). ([9])(3).. ([9]),. ([9])(2).,,. ([9]), u = (2) u t + (u )u + 1 ρ p 1 u = f (3) ν 2

1:., u,, p, ν, f.,. ([9]),. ([9])(3). ũ t + (ũ )ũ + p 1 Re ũ = f (4) (3)..,. ([9]). ([9]),.. ([9]) x 1, x 2, U, σ = [σ ij ], i, j = 1, 2, n = (n 1, n 2 ) G G.. u = (U, )(x γ i ) (5) 3

σ(u, p)n = (x γ o ) (6) t T σ(u, p)n =, u n(x γ w ) (7) t γ w. σ. D ij σ ij (u, p) = pδ ij + 2 Re D ij(u) (8) D ij (u) = 1 2 ( u i x j + u j x i ) (9). G,., ε,. u = ( (2πε)x 2, (2πε)x 1 ) (1) 3.2. ([3])(4) v, Ω. ( p + p ( ) v1 ) dx = pv 1 dx 2 p v 1 dx p v 2 dx(11) Ω x 1 x 2 v 2 Ω x 1 Ω x 2 (11) γ o pv 1 dx 2 p v 1 dx p v 2 dx Ω x 1 Ω x 2 = 2 u1 v 1 dx 2 Re x 1 Ω pdiv(v)dx (12). (4), v, Ω. (4) a(u, v) = 2 2 D i,j (u)d i,j (v)dx (13) Re Ω i,j=1 4

(4). 1 Re {2 u 1 v 1 dx + ( u 1 + u 2 )( v 1 v 2 ) + 2 Ω x 1 x 1 Ω x 2 x 1 x 2 x 1 Ω = 1 Re {( 2 u 1 2 u 1 2 u 2 v 1 dx 2 v x 2 x 1 Ω x 2 1 dx) 2 v 1 Ω x 2 2 dx 2 + ( u 1 v 1 + u 1 2 u 1 u 2 v 1 )dx 1 v x 1 x 2 x 2 Ω x 2 1 dx + v 2 dx 2 2 x 2 x 1 2 u 2 u 1 2 u 1 v Ω x 2 2 dx + v 2 dx 2 v 2 dx 1 x 2 x 2 Ω x 1 x 2 + ( u 2 v 1 + u 2 v 1 )dx 1 x 1 x 1 x 1 Ω Ω u 2 x 2 v 2 x 2 dx} 2 u 2 x 1 x 2 v 1 dx} (14) (14),,,,,,. u 1 x 2 = u 2 x 1 1 Re {2 u 1 v 1 dx + ( u 1 + u 2 )( v 1 v 2 u 2 v 2 ) + 2 dx} Ω x 1 x 1 Ω x 2 x 1 x 2 x 1 Ω x 2 x 2 = 1 Re {2 u 1 2 u 1 2 u 2 v 1 dx 2 2 v x 2 x 1 Ω x 2 1 dx 2 v 1 Ω x 2 2 dx 2 2 u 1 2 u 2 v Ω x 2 1 dx v 2 Ω x 2 2 dx 1 2 u 1 2 u 2 v 2 dx v 1 dx} (15) x 1 x 2 x 1 x 2 Ω. (15), x 1 ( u 1 x 1 + u 2 x 2 )v 1 =,, x 2 ( u 1 x 1 + u 2 x 2 )v 2 =, 2 Re 2 Ω i,j=1 D i,j (u)d i,j (v)dx = 2 Re x 2 u 1 x 1 v 1 dx 2 1 Re. (12). V,Q. ([3]) Ω u vdx (16) V (g, ε) = {v (H 1 (Ω)) 2 ; v = ( (2πε)x 2, (2πε)x 1 )(x G), v = g(x γ i ) v n = (x γ)}v = V (, ), Q = L 2 (Ω)(17) V,Q (H 1 (Ω)) 2, L 2 (Ω). (u, p) : (, T ) V (g, ε) Q ( u t, v) + a 1(u, u, v) + a(u, v) + b(v, p) = (f, v)( v V ) b(u, q) = ( q Q) (18) 5

. a 1 (u, u, v) = Ω i=1 2 (u grad)u i v i dx b(v, p) = pdiv vdx Ω., f. 3.3 Ω. ([3]), h.. ([3]) Ω. V h (g, ε) V h, v h (P ) = ( (2πε)x 2, (2πε)x 1 )(P G), v h (P ) = g(p )(P γ i ), (v h n)(p ) = (P γ w ) (19). P. V h = V h (, ). Q h. V h V, Q h Q, N u = dimv h, N p = dimq h. ϕ, i = 1,..., N u V h, ψ, i = 1,..., N p Q h. N u V h. V h ϕ 1, ϕ 2,..., ϕ Nu, ϕ 1, ϕ 2,..., ϕ Nu V h. v h (x 1, x 2 ) = N u i=1 C i ϕ i (x 1, x 2 ), q h (x 1, x 2 ) = N u i=1 D i ψ i (x 1, x 2 ) (2). C i, D i. (18) (u h, p h ) : (, T ) V h (g, ε) Q h ( u h t, v h) + a 1 (u h, u h, v h ) + a(u h, v h ) + b(v h, p h ) = (f, v h )( v h V h ) b(u h, q h ) = ( q h Q h ) (21) 6

.,. ([3]),,. ([3]) u h = N u j=1 u j ϕ j + N u+m u j=n u+1 u(p j )ϕ j, p h = N u j=1 p j ψ j (22). M u. (2), (22) (21), d dt. N u j=1 u j (ϕ j, ϕ i ) + N u = (f, ϕ i ) d dt j,k=1 N u +M u j=n u+1 a 1 (ϕ k, ϕ j, ϕ i )u k u j + N u (ϕ j, ϕ i )u(p j ) N u+m u j,k=n u +1 j=1 a(ϕ j, ϕ i )u j + N p j=1 a 1 (ϕ k, ϕ j, ϕ i )u(p k )u(p j ) b(ϕ i, ψ j )p j Nu+Mu a(ϕ j, ψ i )u(p j )(i = 1,..., N u ) (23) j=n u +1 4,., D = 1 2 C DρU 2 A (24) L = 1 2 C LρU 2 A (25). ([3]), ρ, U, A G. C D, C L,,. ([3]),,. ([3]). 7

4.1 G., 2 D = σ 1,j n j ds (26) L = G j=1 G j=1 2 σ 2,j n j ds (27). ([3])(24), (25), C D = 2 2 σ ρu 2 1,j (u, p)n j ds (28) A C L = 2 ρu 2 A G j=1 G j=1 2 σ 2,j (u, p)n j ds (29). ([3]),. G,. ([3]),. 4.2 L 2 (Ω), H m (Ω). L 2 (Ω) = {v : Ω R; v < + } v = { v 2 dx} 1/2 Ω H m (Ω) = {v L 2 (Ω); v m < + } v m = { D α v 2 } 1/2 α m., α = (α 1, α 2 ), 8

α = 2 α i, i=1 D α = Π 2 i=1( x i ) α i. (u, p) (H 1 (Ω)) 2 H 1 (Ω), v (H 1 (Ω)) 2. ([3]), ( u t, v) + a 1(u, u, v) + a(u, v) + b(v, p) = { u Ω t + (u grad)u 1 Re u + gradp 1 Re grad(divu)}vdx + [σ(u, p)]n vds (3) Ω. ([3])., (u, p) (18). w Ω, { w = 1(x G) (31) w = (x Ω \ G). v D = (w, ), v L = (, w). (3) 1 4 (3), 5 (2),. (3) v v D v L,. ([3]) [σ(u, p)]n v D ds = ( u t, vd ) + a 1 (u, u, v D ) + a(u, v D ) + b(v D, p) (32) Ω Ω [σ(u, p)]n v L ds = ( u t, vl ) + a 1 (u, u, v L ) + a(u, v L ) + b(v L, p) (33) 2 (28), (29) C D = 2 ρu 2 A ( u t, vd ) + a 1 (u, u, v D ) + a(u, v D ) + b(v D, p) (34) 9

C L = 2 ρu 2 A ( u t, vl ) + a 1 (u, u, v L ) + a(u, v L ) + b(v L, p) (35). (28), (29),, w. ([3]). C D, C L (26), (27), D = ( u t, vd ) + a 1 (u, u, v D ) + a(u, v D ) + b(v D, p) (36) L = ( u t, vl ) + a 1 (u, u, v L ) + a(u, v L ) + b(v L, p) (37). ([3]) 2. 5 Ω 2. γ i 45, γ o 3, γ w 15, G 45, Free FEM++. 1486, 7595.,,.,,. ([2]) 6, t. min t = κ u 2 1 + u 2 2 (38) κ.,. (38), min t, min t min t t. t =.1.,. Re, Free FEM++.,. ([2]) 1

2: 11

.25 Navier- Stokes Free FEM++. Re = 4, Re = 5 1, Re = 2.,. Re = 8,, t,,.,,., [3],, Re 25., Re 4. Re 4, Re = 4. Re = UL ν (39) (39),,. ([9])U, L, ν. U, L. Re 4,. L =.1[m], ν =.893 1 6 [m 2 /s] (25 ), U =.36[m/s]. ([6]) 7. 3 4. 3 Re = 4.,., =.3 1, =.5 1.8, =.7 2.5, =.9 3.2. t =.,,.,.,.. 12

2 4 6 8 1 1-1 -2-3 -4 3: (Re=4),. 4 Re = 4.,., =.3, =.5, =.7, =.9., 3.. (a). 5 Re = 4.,., =.3, =.5, =.7.. =.3.. 6 Re = 3.,., =.3, =.5, =.7, =.9. Re = 4,, Re = 4. 13

2 4 6 8 1 4 3 2 1-1 4: (Re=4) 2 4 6 8 1.1.2.3.4.5.6.7.8 5: (Re=4) 14

2 4 6 8 1 1-1 -2-3 -4 6: (Re=3) 7 Re = 3.,., =.3, =.5, =.7, =.9. Re = 4, 6. 8. t = 5.,,,.. ([9]). ([9]).. 9 =.5. t = 5..,.. 15

2 4 6 8 1 4 3 2 1-1 7: (Re=3) 1 = 1.. t = 5.,..,.,.. 16

8: (Re=4) 17

9: =.5 (Re=4) 18

1: = 1. (Re=4) 19

1.72242 -.536827.535415 -.1172.1 1.884 -.965341.115463 -.42833.2 1.7758-1.381227 -.33647 -.848186.3 1.22736-1.752542 -.72986-1.247294.4.91691-2.7147-1.16356-1.619747.5.73366-2.34959-1.67299-1.976936.6.376478-2.46296-2.86482-2.276547.7.13612-2.591496-2.577885-2.584648.8.18-2.95611-2.95593-2.956.9-3.2753-3.2753-3.2753 1. -3.5231-3.5231-3.5231 -.1 1.8492 -.118742.96616.426268 -.2 1.79486.299981 1.379467.84545 -.3 1.2253.725464 1.747966 1.242787 -.4.982 1.156187 2.64189 1.614452 -.5.724632 1.6575 2.33382 1.9715 -.6.355431 2.9846 2.446277 2.27252 -.7.13221 2.58354 2.593575 2.586924 -.8.15 2.95977 2.95992 2.95983 -.9 3.27453 3.27454 3.274531-1. 3.52564 3.52564 3.52564 (a) (Re=4) (a) Re = 4. = 1., = 1.. t = 4 t = 1.... t = 4 1. t = 4 1. =.1, =.2, =.3 =.8. 2

.,..., = 1.,, = 1..,..955132 -.476942.47819.419.1.96788 -.887396.73393 -.496.2.954617-1.288587 -.33397 -.81692.3.914953-1.666716 -.751763-1.215126.4.836795-2.16565-1.17977-1.62726.5.7532-2.331642-1.626322-1.981856.6.42267-2.527773-2.1513-2.318191.7.2278-2.65767-2.63489-2.645197.8.68-3.4477-3.449-3.44357.9-3.38928-3.38928-3.38928 1. -3.6728-3.6728-3.6728 -.1.96139 -.73384.8886.49226 -.2.955999.332346 1.288345.814895 -.3.914171.749582 1.663753 1.21246 -.4.83287 1.178571 2.1658 1.599277 -.5.697987 1.626949 2.324936 1.978916 -.6.417896 2.16598 2.524495 2.317582 -.7.2499 2.63542 2.6641 2.646562 -.8 3.4574 3.4654 3.4648 -.9 3.3977 3.3978 3.39771 (b) (Re=3) (b) Re = 3. (a), t = 4 t = 1. Re = 4, =.5.. 21

,, Re = 4. 11: 11. 35. 1., =.1, =.2, =.3..,.. 8 8.1., 22

..., (4). m d2 y dy + k dt2 dt dy dt = L (4) (4). m, k, L. m, k. m = m ρl 3 (41) k = k ρl 2 (42) (4).. ([1]). ([1]). ([1]).. ([1]). k = 1 CρS (43) 2 C, C. ([1]) C =.5. S. ρ 25 ρ =.997 1 6 k = 2.5 1 3 [g/m]. (42) k = 25.. (4),. y(), y() y( t), ẏ( t). ẏ = ẏ(). m d2 y dt dy() + k 2 dt dy dt = L (44) (44) (4). ẏ(t) = Z(t). Z(t) = Ae k m ẏ() t + 23 L k ẏ() (45)

y(t) = m k k ẏ() Ae m ẏ() t +. A, B. L k ẏ() t + B (46) A = ẏ() L k ẏ() (47) B = y() + m k ẏ() (ẏ(),. L k ẏ() ) (48) 12: 8.2... 12. 12. 24

, =.1, =.2, =.3..,.,...,.. 8.3.,..,.,,. 13.,.,,.,,.,. x y,..,,.,,.,.,.., 25

13: 26

.. 14: 8.4 14. 35., =.1, =.2, =.3. 1cm. 13. =, =.1, =.2, =.3. 1.. 99.7g.,.,. =.1 1 2cm. 27

15: 15 14....,. 16.,..,.,. 17 =.3.,..,.,.,.. 18. 28

16: 17: 29

5 1 15 2 25 3.6.4.2 -.2 -.4 -.6 18: 85..,.. 19. 4.......,... 2. 4.,,.. 3

2 4 6 8 1 12 14.5 -.5-1 -1.5-2 -2.5-3 -3.5-4 19: 2 4 6 8 1 12 14.8.6.4.2 -.2 -.4 -.6 -.8 -.1 2: 31

2 4 6 8 1 5-5 -1-15 -2-25 -3-35 -4 21: = 1. 21 = 1.., =.2, =.4, =.6, =.8, = 1..., = 1.. 22 = 1.., =.2, =.4, =.6, =.8, = 1...,. =.6... 23 = 1.., =.2, =.4, =.6, =.8, = 1...,. =.6 32

2 4 6 8 1 1-1 -2-3 -4 22: = 1. 2 4 6 8 1.5 -.5 -.1 -.15 -.2 -.25 -.3 -.35 -.4 23: = 1. 33

.. 9 m = 1.. 5 1 15 2.3.25.2.15.1.5 -.5 24: 24. m = 1 99.7g, m = 5 49.85g, m = 1 9.97g, m = 1.997g. m = 1, m = 5 m = 5. m = 1 m = 1. m = 1... 34

25 =.1. 2 4 6 8 1-2 -4-6 -8-1 -12-14 25: =.1 m = 1, m = 5, m = 1, m = 1. m = 1. m = 1 t = 1 m = 1.,. 26 =.3. m = 1, m = 5, m = 1, m = 1.. m = 1 m = 1. 27. m = 1, m = 5, m = 1, m = 1. m = 1,,. m = 1,., 35

2 4 6 8 1-25 -2-15 -1-5 26: =.3 5 1 15 2.8.6.4.2 -.2 -.4 -.6 -.8 27: 36

. 5 1 15 2 25 3 35 4.4.2 -.2 -.4 -.6 -.8-1 -1.2 28: =.1 28 =.1. m = 1, m = 5, m = 1, m = 1. m = 1. m = 1.. 29 =.3. m = 1, m = 5, m = 1, m = 1., =.1 m = 1, m = 1. m = 1.. 3. m = 1, m = 5, m = 1, m = 1.,. 31 =.1. 37

2 4 6 8 1 -.6 -.8-1 -1.2-1.4-1.6-1.8-2 29: =.3 5 1 15 2.15.1.5 -.5 -.1 -.15 3: 38

2 4 6 8 1.1.5 -.5 -.1 -.15 -.2 31: =.1 m = 1, m = 5, m = 1, m = 1. m = 1 m = 5, m = 1, m = 1. m = 1. 32 =.1. m = 1, m = 5, m = 1, m = 1. m = 1 m = 5, m = 1, m = 1. 1., x 1 u 1 = 1, u 2 =.. 33 39

2 4 6 8 1 -.3 -.25 -.2 -.15 -.1 -.5 32: =.3 2 4 6 8 1.5 -.5-1 -1.5 33: 4

., =.1, =.2, =.3..,,.,,...,,. 2 4 6 8 1 5-5 -1-15 -2 34: 34., =.1, =.2, =.3..,. 35 41

2 4 6 8 1.5 -.5 -.1 -.15 -.2 -.25 35:., =.1, =.2, =.3.... 11, LATEX,, Linux. 42

12 [1],,,,, [2], F reef EM + + 27, 21 COE, MARCH 27, pp. 71-78 [3],, No. 417, MARCH 1998, pp. 13-19 [4],,,, Vol.48, pp.22-36, 1996. [5]Masahisa TABATA and Daisuke TAGAMI, Error Estimates for Finite Element Approximations of Drag and Lift in Nonstationary Navier-Stokes Flows, Reprinted from the JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS Vol. 17. No. 3, pp.371-389, October 2 [6], http : //www.gaia.h.kyoto u.ac.jp/public h tml/theses/pdf/higuchi24.pdf [7],, 75 [8],,, [9],, 25,