Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Similar documents
Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

TOP URL 1

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1


120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

meiji_resume_1.PDF

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

0 0. 0

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

TOP URL 1

QMII_10.dvi

201711grade1ouyou.pdf

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

振動と波動

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

phs.dvi


量子力学 問題

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

Note.tex 2008/09/19( )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


untitled

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

Gmech08.dvi

arxiv: v1(astro-ph.co)


0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

IA

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

II 2 II

液晶の物理1:連続体理論(弾性,粘性)

all.dvi

Z: Q: R: C:

Z: Q: R: C: sin 6 5 ζ a, b

DVIOUT

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

: , 2.0, 3.0, 2.0, (%) ( 2.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

pdf

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )


,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

Microsoft Word - 信号処理3.doc

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

TOP URL 1

body.dvi

Microsoft Word - 11問題表紙(選択).docx

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

構造と連続体の力学基礎

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

Chap11.dvi

2 2 L 5 2. L L L L k.....

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

高知工科大学電子 光システム工学科

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

( )

Transcription:

Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t E x, t = φ x, t 5 B x, t = A x, t 6 B = A = A A E = A φ A x, t + φ x, t = 7

Maxwell A x, t = A A = A B + E + = φ B + E + φ = µ j x, t φ x, t = φ φ = E A + A = ε ρ x, t φ A x, t = µ j x, t 8 φ x, t = ε ρ x, t 9 3 Green A x, t Fouroer A x, ω A x, t = A x, ω = π E.8 E.9 Fourier A x, ω e iωt dω A x, t e iωt dt A x, ω + ω A x, ω = µ j x, ω φ x, ω + ω φ x, ω = ρ x, ω ε 3 j ρ E. E.3 A φ Green G x, ω G x, ω + ω G x, ω = δ3 x = δxδyδz 4 δ 3 x δ δx = π e ikx dk, δ 3 x = π 3 e ik x d 3 k, f x = f x δx x d 3 x

4 Maxwell Green A x, ω = µ φ x, ω = ε d 3 x Gx x, ω j x, ω 5 d 3 x Gx x, ω ρ x, ω 6 E.4 x, ω x x, ω µ j x, ω d 3 x µ d 3 x Gx x j x, ω + µ d 3 x ω Gx x j x, ω = µ d 3 x δ 3 x x j x, ω [ ] ] = µ d 3 x Gx x j x, ω + [µ ω d 3 x Gx x j x, ω = µ j x, ω = A x, ω + ω A x, ω = µ j x, ω E. E.4 x, ω x x, ω ρ x, ω/ε d 3 x d 3 x Gx x ρ x, ω + d 3 x ω ε ε Gx x ρ x, ω = d 3 x δ 3 x x ρ x, ω ε [ ] [ ] = d 3 x Gx x ρ x, ω + ω d 3 x Gx x ρ ε x, ω = ρ x, ω ε = φ x, ω + ω φ x, ω = ρ x, ω ε E.3 E.4 Green G x, ω x Fourier Ĝ k, ω = d 3 x e k x G x, ω, G x, ω = d 3 k e ik x Ĝ k, ω π 3 ε E.4 d 3 k e ik x k Ĝ k, ω + ω d 3 k e ik x Ĝ k, ω = δ 3 x e k x d 3 x Ĝ k, ω = π 3 k ω = π 3 k µ 7 G x, ω = π 3 dk eik x k µ = π 3 k dk + k = k µ = ω / r = x k x = krν ν = os θ dν eikrν k µ = ke ikr 4iπ r k µ dk k ±µ k 3

exp [ik R k l r] = exp ik R r exp k i r exp k l r ke ikr k µ dk = C ke ikr k µ dk = [ C Cauhy e ikr k + µ dk + C e ikr ] k µ dk 4. k lim ɛ + e ikr dk = lim k ± µ iɛ ɛ + C e ikr dk = πie iµr k ± µ iɛ lim ɛ + e i kr dk = lim k ± µ + iɛ ɛ + C e i kr k ± µ + iɛ dk = lim ɛ + lim ɛ + e i kr + k ± µ iɛ dk = P e i kr + k ± µ + iɛ dk = P P e ikr dk + lim k ± µ ɛ + π e ikr dk + lim k ± µ ɛ + π f k µ ɛ dk lim k ± µ ɛ + e µ+ɛeiφ r ɛe iφ e µ+ɛeiφ r ɛe iφ f k + k ± µ dk + µ+ɛ iɛe iφ e ikr dφ = P dk + iπe iµr k ± µ iɛe iφ e ikr dφ = P dk iπe iµr k ± µ f k k ± µ dk Cauhy s Prinipal Values e ikr P dk = iπe iµr k ± µ f x lim ɛ + f x + x x ± iɛ dx = P f x x x dx iπ f x x x ± iɛ = P iπδx x x x 4

4. running wave G ± x, ω = 4iπ r lim ke ikr ɛ + k µ ± iɛ dk = 4iπ r lim ɛ + ke ikr k µ ± iɛ dk ±iɛ ɛ > ɛ + G ± x, ω = 4iπ r lim ke ikr ɛ + k µ ± iɛ dk = [ 4iπ r lim πi ke ikr ] ɛ + k ± µ ± iɛ k=±µ±iɛ = 4iπ r lim πi ± µ ± iɛ ei[±µ±iɛ]r = [ ] ±µe i±µr ɛ + ± µ ± iɛ ± µ ± iɛ 4iπ r πi ±µ ± µ = e±iµr 4πr = e ±i ω x 4π x G x, ω k G ± x, ω = 4iπ r lim ke ikr ɛ + k iɛ µ dk = { 4iπ r lim e ikr ɛ + k µ ± iɛ + e ikr k µ ± iɛ } dk 8 G + x, ω G + x, ω = { 4iπ r lim e ikr ɛ + k µ + iɛ + = os µr 4πr e ikr } dk = k µ + iɛ 4iπ r iπ e iµr + e iµr 9 G = x, ω G x, ω = 4.3 G k, µ = π 3 k + µ Fourier G x, µ = d 3 k G k, µ e ik x = d 3 eik x k π 3 k + µ = π 3 = k sinkr dk = π k + µ kr π r ξ + r µ dξ π dφ k dk dξ kr = ξ, dk = r π dθ sin θ eikr os θ k + µ ξ + r µ ξ + r µ dξ = ξ + r µ dξ 5

ξ + r µ dξ ze CR iz z + dz ze CR iz z + dz z e iz R sin θ C R z + CR dz Re R dz z = Re iθ θ π, dz = z θ dθ = ire iθ dθ = Rdθ = π = R R r sin θ Re < R R R R Rdθ = R π/ π R < e R sin θ dθ + π π/ R R π R = R e R sin θ dθ = R e R sin ψ dψ = R R πr R R π/ π/ π e R sin θ dθ + e R sin θ dθ π/ e R sin θ dθ ξ + r µ dξ = Im [ πir+irµ ] { ze dξ = Im πi iz } z irµ ξ + r µ z + irµ z irµ z=+irµ ] = Im [πi irµe rµ = Im irµ [πi e rµ ] = πe rµ G x, ω = π r ξ + r µ dξ = π r πe µr = e µr 4π r t ht ht π dx eixt x iɛ, ɛ > t > ht > = π dx eixt x iɛ = πi πie = t < ht < = 4.4 t t t = t ± x x 6

E.8 G ± x, ω E.8 ] A x, t = [µ d 3 x Gx x, ω j x, ω e iωt dω = µ dω e iωt d V V 3 x + G ± x, ω j x, t e iωt dt π = µ d 3 x + 4π V x x dt j x, t + dω e iω ± x x +t t π = µ d 3 x dt δ t t x x j x, t 4π V x x 3 = µ d 3 x j x, t 4π V x x 4 E.9 [ ] + φ x, t = d 3 x Gx x, ω ρ x, ω e iωt dω = ε dω e iωt d ε V V 3 x G ± x, ω π = d 3 x + 4πε V x x dt ρ x, t + dω e iω ± x x +t t π = d 3 x dt δ t t x x ρ x, t 4πε V x x = d 3 x ρ x, t 4πε V x x E.3 E.5 E. δ t t ρ x, t e iωt dt 5 6 4.5 Liénard-Wiehert ρ x, t = δ x x t, j x, t = ut δ x x t 7 t h x, t, t t t + x x t Rx, t = x x t, nx, t = x x t Rx, t, ut = dx t dt = βt E.3 E.5 δ dt δ f t gt = d f dt d f δ f g t f = i d f t i dt gt i f ti = 8 7

A x, t = µ dt δ hx, t, t ut 4π x x t = µ 4π d dt t t + x x t ut Rx, t = µ ut 4π nt βt Rx, t hx,t,t = φ x, t = dt δ hx, t, t 4πε x x t = 4πε d dt t t + x x t Rx, t = 4πε nt βt Rx, t hx,t,t = hx,t,t = hx,t,t = 9 3 E.9 E.3 Liénard-Wiehert 5 E.5 E x, t = β t nt βt 4πε κ 3 t R x, t + nt [ nt βt βt ] 4πε κ 3 t Rx, t 3 κt = nt βt 3 5. φ x, t = x 4πε dt [ δ hx, t, t ] x Rx, t + 4πε dt δ hx, t, t [ ] x Rx, t = dt δ hx, t, t [ ] 4πε x Rx, t = dt δ hx, t, t n x 4πε R x, t = n x 4πε d dt t t + x x t R x, t = n x hx,t,t 4πε = nt βt R x, t = n x 4πε κt R x, t hx,t,t = hx,t,t = 8

= 4πε hx,t,t = dt [ δ hx, t, t ] x Rx, t = dt 4πε = + dy dt n x 4πε dy Rx, t y δt y, y = t + x x t = + dy dt n x 4πε y dy Rx, t δt y = [ ] dt n x 4πε dt Rx, t = [ dt hx,t,t = 4πε dt = [ ] n x 4πε κt κt Rx, t dt = = dt κt [ δ t t + x x t ] x ] n x Rx, t hx,t,t = Rx, t φ x, t = [ ] n x x 4πε κt κt Rx, t hx,t,t = 4πε κt n x R x, t hx,t,t = 33 5. nt t nt = ṅt = x x t Rx, t = ut Rx, t + x x t = βt + nt nt βt Rx, t = ẋt Rx, t + x x t drx, t d dt drx, t x x t ẋt R x, t Rx, t Rx, t 34 n n β = n n β β n n nt = nt nt βt Rx, t 35 9

5.3 A x, t t A x, t = µ 4π = 4πε { δ t t + Rx, t ut } Rx, t { δ dt dt ut Rx, t Rx, t t t + Rx, } t = dt βt { 4πε Rx, t Rx, t δ t t + Rx, } t = + dy dt βt 4πε dy Rx, t y δt y, y = t + x x t = + dy dt βt 4πε y dt Rx, t δt y = [ dt βt ] 4πε dt Rx, t = [ dt hx,t,t = 4πε dt = [ βt ] 4πε κt κt Rx, t hx,t,t = βt ] Rx, t hx,y,t = 6 E.5 A x, t E x, t = φ x, t = E.6 B x, t = A x, t = µ 4π = 4πε = 4πε V d 3 x dt nt ut [ nt 4πε R x, t κt + κt dt δ x x t nt ut Rx, t dt nt βt [ δ t t Rx,t nt βt ] κt Rx, t Rx, t δ t t Rx,t Rx, t + R x, t Rx, t Rx, t δ E x, t B x, t = [ βt nt 4πε R x, t κt + βt nt ] κt Rx, t κt E x, t E.35 E x, t = [ nt 4πε R x, t κt + nt nt βt + nt R x, t κ t κt κt Rx, t δ t t Rx,t Rx, t t t Rx, ] t κt βt κt Rx, t ]

t nt R x, t κt + nt nt βt nt κt = R x, t κ t R x, t κ t + nt nt βt R x, t κ t nt = κ t R x, t nt nt βt nt nt βt κ t R x, t nt = κ t R x, t βt κ t R x, t E x, t = [ nt 4πε R x, t κ t + nt κt κt Rx, t βt R x, t κ t κt βt κt Rx, t ] 36 E.36 d dt βt = βt d κt dt Rx, t = dκt dt Rx, t + κt drx, t dt = = nt nt ut Rx, t { d dt nt βt ut + nt ut = nt nt ut ut Rx, t = β t nt βt Rx, t nt βt R } Rx, t κt nt ut nt nt ut ut ut + nt ut R nt nt ut ut E x, t t E x, t = [ n 4πε R κ + n κ β κr R κ ] β κ κr t = [ n 4πε R κ + n β n β R n β κ κ R β R κ { β κ κr + β β t nt βt Rx, t nt βt } ] κ R = 4πε = 4πε = 4πε = 4πε [ n β n nβ + n β n n β β + ββ n β β κ 3 R + n n β β n β β n β ] κ 3 R t ṅ β R + κn β n β + R κṅ + κ n κ 3 R + [ ] n β n β κ β 37 4πε κ 3 R t t n β β n β n β β n n β + κ 3 R κ 3 R t β n β κ 3 R + n { n β β } 4πε 38 κ 3 R t t E.3 /R t

7 E.36 B x, t = [ βt 4πε R x, t κ t + κt E.36 E.39 βt Rx, t κt ] nt 39 B x, t = nt E x, t 4 E.4 8 Poynting Vetor Larmor Poynting Vetor P x, t E x, t B x, t µ 4 4πR E.3 E.4 /R Poynting Vetor /R [ E rad x, t = nx, t nx, t βx, t βx, t ] 4πε κ 3 x, t Rx, t 4 B x, t = nx, t E rad x, t 43 Poynting Vetor P x, t = E rad x, t B rad x, t µ = E {n E rad} µ = E rad n n E rad E rad µ β κ = E rad µ n, E rad n E n = 44 P x, t = [ n n β ] n = [ n β n β ] n µ 4πµ R µ 4πµ R = [ β os Θ n β ] n = β os Θ + β β os Θ n µ 4πµ R µ 4πµ R = µ 4πµ β sin Θ R n 45

Θ n β dω ds ndω n n = R dω P ds P x, t = R 6π 3 µ ε = u π dθ sin 3 Θ = u 8πε 3 8πε 3 lim R π π dφ π dθ R sin Θ u sin Θ R 3 sin Θ sin 3Θ dθ = u 4 4 8πε 3 3 = u 6πε = u 46 3 3 4πε 3 E.46 Larmor 9 MKS gs Gauss MKS gs Gauss MKS Gauusian B MKS B Gaussian ε 4π µ 4π µ ε 3