−g”U›ß™ö‡Æ…X…y…N…g…‰

Similar documents
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

日本内科学会雑誌第102巻第4号

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

newmain.dvi

30

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Dynkin Serre Weyl


III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

³ÎΨÏÀ

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

gr09.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx

v er.1/ c /(21)


1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

( ) ( )

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

Chap11.dvi

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

2 2 L 5 2. L L L L k.....

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Microsoft Word - 表紙.docx

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

Ł\”ƒ-2005

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

第90回日本感染症学会学術講演会抄録(I)

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

meiji_resume_1.PDF

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

DVIOUT

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

6.1 (P (P (P (P (P (P (, P (, P.101

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

LLG-R8.Nisus.pdf

第86回日本感染症学会総会学術集会後抄録(I)

『共形場理論』

6.1 (P (P (P (P (P (P (, P (, P.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

A

201711grade1ouyou.pdf

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

II 2 II


A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %



Part () () Γ Part ,

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

統計学のポイント整理

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


10:30 12:00 P.G. vs vs vs 2

Chap9.dvi

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx


n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

5 1F2F 21 1F2F

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

( ) Loewner SLE 13 February

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)


Transcription:

1 / 74 ( ) 2019 3 8 URL: http://www.math.kyoto-u.ac.jp/ ichiro/

2 / 74 Contents 1 Pearson 2 3 Doob h- 4 (I) 5 (II) 6 (III-1) - 7 (III-2-a) 8 (III-2-b) - 9 (III-3)

Pearson

3 / 74 Pearson Definition 1 ρ Pearson : { g(x) } ρ(x) = exp f(x) dx. (1) g(x) 1 f(x) 2 Pearson 12 6

4 / 74 Pearson I 6 1 e βx2 /2 R 2 x α e βx (0, ) 3 x α (1 x) β (0, 1) 4 (1 + x 2 ) α exp{β arctan x} R 5 x α e β/x (0, ) 6 x α (1 + x) β (0, )

Pearson II α- β- γ- F- & Pareto t- 5 / 74

: α- a = 1 0F 1 β- a = x a = x 2 1F 1 γ- a = x(1 x) a = x(1 + x) a = 1 + x 2 2F 1 α- β- - γ- 6 / 74

7 / 74 1 1 : Definition 2 A = a d2 dx 2 + b d dx. (2) (2) a 2 b 1 Pearson-Kolmogorov Kolmogorov a b 1 Feller dm = ρdx Pearson Kolmogorov

A Kolmogorov a d2 dx 2 + b d dx Feller d d dm ds d dm = d ds d ds : L2 (dm) L 2 (ds) Stein ( a d dx + b) d dx a d dx + b = d dx d dx : L2 (ρ) L 2 (aρ) 8 / 74

9 / 74 Feller Stein Feller Stein Feller s pair Stein s pair d d dm ds (a d dx + b) d dx d d ds dm d dx (a d dx + b) pair 0

10 / 74 Stein Stein d dx (a d d2 + b) = a dx dx + 2 (a + b) d dx + b. a 2 b 1 Kolmogorov Stein

Doob h-

11 / 74 V = d dx d ds d = aρ d ds dx V = d dx : d ds : L2 (ρ) L 2 (1/(aρ)) d dx : L2 (ρ) L 2 (aρ).

12 / 74 U f = aρ f (3) U : L 2 (aρ) L 2 (1/(aρ)) Proposition 3 d ds = UV ( d ds ) U = V

13 / 74 L 2 (aρ) D U D L 2 (ρ) L 2 (1/(aρ))( ) L 2 (ρ) d d d = ds ds dm Figure 1: V d ds

14 / 74 Doob h- V d dm VV d d ds dm Theorem 4 VV d d ds dm VV = U 1 d ds d dm U, d ds d dm = UVV U 1. (4)

15 / 74 Kolmogorov diffusions a 2 b 1 A = a d2 dx 2 + b d dx Kolmogorov diffusions a 0 1 2 3 (I) a = 1 on (, ) (II) a = x (0, ) (III-1) a = x 2 on (0, ) - (III-2-a) a = x(1 x) on (0, 1) (III-2-b) a = x(x + 1) on (0, ) - (III-3) a = x 2 + 1 on (, )

(I)

16 / 74 a = 1 b = β R b = β R β A = d2 dx + β d (5) 2 dx ρ(x) = exp{ βdx} = e βx (6) V = d dx : L2 (ρ) L 2 (ρ) ( d dx ) = d β. (7) dx

17 / 74 I : L 2 (ρ) L 2 (dx) : J f(x) = e βx/2 f(x). (8) L 2 (ρ) J L 2 (dx) A L 2 (ρ) J d 2 dx 2 β2 4 L 2 (dx) (9)

18 / 74 σ(a) = (, β2 4 ] (10) d2 A dx 2 e (iλ β/2)x λ β 2 /4 d dx e(iλ β/2)x = (iλ β/2)e (iλ β/2)x ( d dx + β)e(iλ β/2)x = (iλ + β/2)e (iλ β/2)x V, V Stein

19 / 74 5 4 3 2 1 1 1 2 3 4 β 2 3 4 5 Figure 2: β

20 / 74 Feller Feller β y 4 3 2 1 1 1 2 3 4 fi 2 3 4 Figure 3: Feller s pair

a = 1 b = βx, β R β = 0 A = d2 dx 2 + βx d dx (11) ρ(x) = exp{ βxdx} = e βx2 /2 V = d dx : L2 (ρ) L 2 (ρ) ( d dx ) = d βx (12) dx Au = V Vu = u + βxu, Âu = VV = u + βxu + βu 21 / 74

22 / 74 Hermite Hermite H n (ξ) (n Z +, ξ R) H n (ξ) = ( 1)n e ξ2 /2 dn /2. (13) n! dξ ne ξ2

23 / 74 Ornstein-Uhlenbeck β = 1 Ornstein-Uhlenbeck ( d2 dx 2 x d dx )H n = nh n H n

24 / 74 Ornstein-Uhlenbeck β = 1 Ornstein-Uhlenbeck d ds : L2 (e βx2 ) L 2 (e βx2 ) (14) Feller

25 / 74 Ornstein-Uhlenbeck ( d dx + x)(e x2 /2 H n+1 = xe x2 /2 H n+1 + e x2 /2 H n+1 + xe x2 /2 H n+1 = e x2 /2 H n+1 = e x2 /2 H n. e x2 /2 H n (n + 1) Doob h- J : L 2 (e x2 /2 ) L 2 (e x2 /2 ) J f = ε x2 /2 f (15)

26 / 74 4 3 2 1 1 2 3 4 β Figure 4: β

27 / 74 4 3 2 1 1 2 3 4 β Figure 5: Feller s pair

28 / 74 4 3 2 1 1 2 3 4 β Figure 6: Stein s pair

29 / 74 4 3 2 1 1 2 3 4 β Figure 7: Doob s h-transformation

(II)

30 / 74 a = x, b = 1 + α, α R Bessel I = (0, ), a = x, p = x α Au = xu + (1 + α)u, Âu = xu + (2 + α)u. A and Â

31 / 74 0F 1 (c; x) = n=0 1 (c) n n! xn. (16) B(c; x) = 0 F 1 (c; x). (17)

(a) α > 1 ξ (ξ 0) B(1 + α; ξx) d [B(1 + α; ξx)] = λ dx B(2 + α; ξx). 1 + α entrance family (b) α < 0 ξ (ξ 0) x α B(1 α; ξx) d dx [x α B(1 α; ξx)] = αx α 1 B( α; ξx) exit family 32 / 74

33 / 74 Remark 1 B Bessel B(α + 1, ξx) = Γ(α + 1)(ξx) α/2 J α ( 4ξx) (18)

34 / 74 Bessel entrance family 1 ff 1 ff ff+1 ff+2 ff+3 ff+4 the spectrum of A

35 / 74 Bessel exit family 0 ff α α+1 α+2 α+3 α+4 the spectrum of A

36 / 74 a = x, b = 1 + α x, α R Kummer I = (0, ), a = x, p = x α e x. Au = xu + (1 + α x)u, Âu = xu + (2 + α x)u u. 0

37 / 74 1F 1 (a; c; x) = n=0 (a) n (c) n n! xn. (19) M(a, c; x) = 1 F 1 (a; c; x) (20) M Laguerre L (α) n (x) = (α + 1) n M( n, α + 1; x) (21) n!

38 / 74 Theorem 5 (a) α > 1 entrance family n (n = 0, 1,... ) M( n, α + 1; x) [M( n, α + 1; x)] = n M( n + 1, α + 2; x). α + 1 (b) α < 0 exit family n + α (n = 0, 1,... ) x α M( n, 1 α; x) [x α M( n, 1 α; x)] = αx α 1 M( n, α; x).

39 / 74 Kummer (Exit ) 1 0 α 1 α α+1 α+2 α+3 α+4 1 2 3 4 5..

40 / 74 Kummer (Entrance ) 5 4 3 2 1 0 α α+1 α+2 α 0 1 1 2 2 3 3 4 4 5 5

41 / 74 Kummer 5 4 3 2 1 1 2 3 4 0 α 1 2 3 4 5

42 / 74 a = x, b = 1 + α + x, α R Kummer Feller L α = x d2 d + (α + 1 + x) dx2 dx α > 1 (entrance ) (22) L α n α 1 α < 0 (exit ) L α n 1 L (α) n (x)e x. (23) L ( α) n (x)x α e x. (24)

43 / 74 1 0 1 2 3 4 5 1 2 3 4 α 0 1 2 3 4 5 α α+1 α+2 α+3 α+4 α Figure 8: Kummer Entrance

44 / 74 4 3 2 1 0 α α+1 α+2 α+3 α+4 α 0 1 1 2 2 3 3 4 4. 5. 5 Figure 9: Kummer Exit

45 / 74 5 4 3 2 1 1 2 3 4 0 α 1 2 3 4 5 Figure 10: Kummer

(III-1) -

46 / 74 (III-1) a = x 2, I = (0, ). A = x 2 d d + (αx β) dx2 dx. (25) β = 0 Black-Scholes -

47 / 74 β = 0 Black-Scholes A = x 2 d dx + αx d 2 dx. (26) σ(a) = (, 1 4 (α 1)2 ] (27)

48 / 74 Black-Scholes G = x 2 d2 dx 2 + αx d dx 16 14 12 10 8 6 4 2 0 5 10 15 20 25 30 35 40 45 50 55 60 2 4 6 8 10 12 14 16 α

49 / 74 β = 1 A = x 2 d d + (αx + 1) dx2 dx. (28) n = 0, 1, 2,... λ n (α) λ n (α) = n(n 1 + α). (29) σ ess (A) = (, 1 4 (α 1)2 ] σ p (A) = {λ n (α); 0 n < 1 α }. 2

50 / 74 L (1 2n α) n P (α) n (x) = xn L (1 2n α) Laguerre n (1 ). (30) x

51 / 74 β = 1 G = x 2 d2 d +(αx +1) dx2 dx 16 14 12 10 8 6 4 2 0 5 10 15 20 25 30 35 40 45 50 55 60 2 4 6 8 10 12 14 16 α

52 / 74 β = 1 A = x 2 d d + (αx 1) dx2 dx. (31) n = 1, 2,... ξ n (α) by ξ n (α) = n(n + 1 α) (32) σ ess (A) = (, 1 4 (α 1)2 ] σ p (A) = {ξ n (α); 1 n < α 1 }. 2

53 / 74 x α+2 e 1/x P (4 α) n 1 L (α 2n 1) n 1 (x) = xn α+1 e 1/x L (α 2n 1) n 1 Laguerre (1 ). x

54 / 74 β = 1 G = x 2 d2 d +(αx 1) dx2 dx 16 14 12 10 8 6 4 2 0 5 10 15 20 25 30 35 40 45 50 55 60 2 4 6 8 10 12 14 16 18 α

55 / 74 β = 0 G = x 2 d2 dx 2 + αx d dx 16 14 12 10 8 6 4 2 0 5 10 15 20 25 30 35 40 45 50 55 60 2 4 6 8 10 12 14 16 α

56 / 74 β = 1 G = x 2 d2 d +(αx +1) dx2 dx 16 14 12 10 8 6 4 2 0 5 10 15 20 25 30 35 40 45 50 55 60 2 4 6 8 10 12 14 16 α

(III-2-a)

57 / 74 (III-2-a) a = x(1 x), b = α + 1)(1 x) (β + 1)x I = (0, 1), a = x(1 x), ρ = x α (1 x) β Au = x(1 x)u + ((α + 1)(1 x) (β + 1)x)u, Âu = x(1 x)u + ((α + 2)(1 x) (β + 2)x)u (α + β + 2)u.

58 / 74 Gauss (a) n (b) n 2F 1 (a, b; c; x) = (c) n n! xn. (33) K(x) = K(α, β, γ; x) = 2 F 1 ( γ, α + β + γ + 1; α + 1; x) (34) n=0 Remark 2 K Jacobi P (α,β) n (x) = Γ(α + n + 1) n!γ(α + 1) 1 x K(α, β, n; ). (35) 2

59 / 74 (a) α > 1, β > 1 [entrance,entrance] family n(n + α + β + 1) (n = 0, 1,... ) K(α, β, n) γ(α + β + γ + 1) K (α, β, n) = K(α + 1, β + 1, n 1). α + 1 (b) α < 0, β > 1 [entrance,exit] family (n α)(n + β + 1) (n = 0, 1,... ) x α K( α, β, n) [x α K( α, β, n)] = αx α 1 K( α 1, β + 1, n).

60 / 74 (c) α < 0, β < 0 [exit,exit] family (n + 1)(n α β) (n = 0, 1,... ) x α (1 x) β K( α, β, γ) [x α (1 x) β K( α, β, n)] = αx α 1 (1 x) β 1 K( α 1, β 1, n + 1).

61 / 74 β = α + 3 α 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 α 10 20 30 40 50 60

62 / 74 Stein 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 α 10 20 30 40 50 60

63 / 74 x d2 d + (α + 1) dx2 dx x d2 d + (α + 1 x) dx2 dx x(1 x) d2 d + ((α + 1)(1 x) (β + 1)x) dx2 dx Bessel 0F 1 Laguerre 1 F 1 Jacobi 2F 1

(III-2-b) -

64 / 74 (III-2-b) a = x(1 + x), I = [0, ) A = x(1 + x) d2 d + ((α + 1)(1 + x) + (β + 1))x) dx2 dx. (36) Fisher Pareto -

65 / 74 α > 1 n = 0, 1, 2,... λ n (α, β) λ n (α, β) = ( n β + β )( β β n + α + 1 ) (n β)(n + α + 1), = 2 2 n(n + α + β + 1), Theorem 6 A σ ess (A) = ( (α + β + 1)2 ], 4 σ p (A) = {λ n (α, β); 0 n < [ α + β 1] } 2

66 / 74 G = x(1 + x) d2 d +((α + 1)(1 + x)+(β +1)x) dx2 dx, β = α 11 3 2 1 0 5 10 15 20 25 30 35 40 45 50 55 60 1 2 3 4 5 6 7 8 9 10 11 12 α

67 / 74 α < 0 n = 1, 2,... ξ n (α, β) ξ n (α, β) = ( n β β )( β + β n α 2 2 n(n α β 1), β 0, = (n + β)(n α 1), β 0. + 1 ) Theorem 7 A σ ess (A) = ( (α + β + 1)2 ], 4 σ p (A) = {ξ n (α, β); 1 n < [ α + β + 1] }. 2

68 / 74 3 2 1 5 10 15 20 25 30 35 40 45 50 55 60 1 2 3 4 5 6 7 8 9 10 11 12 G = x(1 + x) d2 d +((α + 1)(1 + x)+(β +1)x) dx2 dx β = α 11 α

(III-3)

69 / 74 (III-3) a = 1 + x 2, I = (, ) A = (1 + x 2 ) d2 d + (2(α + 1)x + 2β) dx2 dx. (37) t-

70 / 74 Theorem 8 A σ ess (A) = (, (α + 1 2 )2]. (38) α < 1 2 λ n (α) = n(n + 2α + 1), 0 n < α 1 2 (39) α > 1 2 ξ n (α) = n(n 2α 1), 1 n < α + 1 2. (40) 1 2 α 1 2

71 / 74 x K(α + iβ, α iβ, n, 1 ix ). 2

72 / 74 β G =(1+x 2 ) d2 d +(2(α +1)x +2β)) dx2 dx 8 7 6 5 4 3 2 1 0 5 10 15 20 25 30 35 40 45 50 55 60 1 2 3 4 5 6 7 α

73 / 74 G =(1+x 2 ) d2 d +(2(α +1)x +2β)) dx2 dx 8 7 6 5 4 3 2 1 0 5 10 15 20 25 30 35 40 45 50 55 60 1 2 3 4 5 6 7 α

74 / 74