( ) Loewner SLE 13 February

Similar documents
Katori_SLE_Sep07_v2c.dvi

Katori_SLE_Feb2010_s1.dvi

Chap11.dvi

i 18 2H 2 + O 2 2H 2 + ( ) 3K

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

³ÎΨÏÀ

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,


2014 S hara/lectures/lectures-j.html r 1 S phone: ,

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

gr09.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

応力とひずみ.ppt

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

meiji_resume_1.PDF


untitled

v er.1/ c /(21)

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

日本内科学会雑誌第102巻第4号

Green

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Part () () Γ Part ,

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

第86回日本感染症学会総会学術集会後抄録(I)


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =


chap9.dvi

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

201711grade1ouyou.pdf

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m


プログラム

08-Note2-web

曲面のパラメタ表示と接線ベクトル

Grushin 2MA16039T

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

2011de.dvi

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

R R 16 ( 3 )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

untitled

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

DE-resume

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

( ) (Appendix) *

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T


..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

( ) ( )

Katori_Bussei_SS09_HP1.dvi

i

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

DVIOUT

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

mf.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Stoch. Integral & SDE (S. Hiraba) 1 1 (Definition of Stochastic Processes),, t, X t = X t (ω)., 1, 2,, n = 1, 2,..., X n = X n (ω).,., ω Ω,,.,,

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

Untitled

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

i

II Brown Brown

Transcription:

( ) Loewner SLE 3 February 00

G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 )

. d- (BES d ) d B t = (Bt, B t,, Bd t ) (d N) X t = B(t) = d (Bt j ) j= d- (BES d ). F (x, x,, x d ) = d x j j=, F (B(t)), X t (stochastic differential equation, SDE). dx t = db t + d dt () X t 3

F x k = x k F, d k= F x k F x k = F x k F 3 = F, Bt,, Bd t dx t = X t d F d k= d x k k= = d F db k t dbl t = δ kldt, k, l d B k t db k t + d d Bt k X dbk t = d t k= Xt t k=(b k ) (dbt k ) = d Xt (Bt k ) dt = dt k=, {B j t }d j= BM, B t dt X t 4

dx t = db t + d dt () X t d,, X t d ()., d ν. ν = d d = (ν + ) () ν, ν. 5

BES d, SDE () (Kolmogorov backward equation) t p(t; x, y) = d xp(t; x, y) + p(t; x, y) x x d <, p(t, y x) = t y ν+ x ν exp, I ν (z) I ν (z) = n=0 Γ(z) Γ(z) = ( x + y t Γ(n + )Γ(n + + ν) ) ( ) xy I ν t ( ) z n+ν 0 e u u z du, Rz > 0 6

. d- (BES d ) x > 0 BES d X x t dx x t = d dt X x t + db t, t 0, X x 0 = x > 0 (3) x > 0 x Xx x t (law) = X t (4) x > 0 BES d T x } T x = inf {t > 0 : Xt x = 0. (5) SDE (3) t T x well-defined 7

. (i) d = T x =, x > 0 (ii) d > = lim t X x t =, x > 0 (iii) d = = inf t>0 Xx t = 0, x > 0 (iv) d < = T x <, x > 0. (i) 3 < d < = x < y, P(T x = T y ) > 0. (ii) d 3 = x < y, T x < T y 8

SLE κ BES d Schramm, U t = κb t, κ > 0, B 0 = 0 t g t(z) = g t (z) κb t, g 0 (z) = z (6) ( t 0 ) {g t } t 0., (chordal) (Schramm- Loewner evolution). κ SLE κ U t = lim s t g s (γ(t)) γ = {γ(t) : t [0, )}. 9

γ (t) H t g t 0 K t 0 U t = g t (γ (t)) = /κ B t SLE κ γ H t = H \ γ[0, t] K t = H \ H t K t SLE κ γ[0, t] hull H SLE κ γ(0, t] hull K t g t H γ(t) H U t κb t 0

SLE κ BM BES d SLE κ SLE κ r > 0 r g (law) r t (rz) = g t (z) r γ(r t) (law) = γ

γ (t) H t g t 0 K t 0 U t = g t (γ (t)) = /κ B t { T z = sup t 0 : g t (z) well-defined g t (z) H } = inf {t 0 : z K t } (7) H t = { z H : T z > t }, K t = { } z H : T z t

ĝ t (z) = g t(z) κb t κ ĝ t (z) dĝ t (z) = /κ ĝ t (z) dt + dw t, ĝ 0 (z) = z κ, W t = B t. κ = 4 d dĝ t (z) = d, BES d. d = 4 κ + (8) ĝ t (z) dt + dw t (9) 3

R[ĝ t (z)] = R t, I[ĝ t (z)] = I t dr t = d R t R t + I t, dt + dw t, di t = d I t R t + I t dt. d(r t + I t r(t) 0 t R ) = (d ) Rt + I t dt (d )dt + R t dw t 4R t dt = t r(t), Y t = R r(t) +I r(t), R t = R r(t), W t = r(t) 0 R t dw t W t, dy t = d W t + d. dt (d )dt X t 4 R = d W t + dt d t X t ( dt X t dt R t ) 4

. (i) d = T x =, x > 0 (ii) d > = lim t X x t =, x > 0 (iii) d = = inf t>0 Xx t = 0, x > 0 (iv) d < = T x <, x > 0. (i) 3 < d < = x < y, P(T x = T y ) > 0. (ii) d 3 = x < y, T x < T y 5

. (i) 0 < κ 4 γ γ(0, ) H lim γ(t) =. t (ii) 4 < κ < 8 γ t>0 K t = H γ(t) γ[0, ) H H H. (iii) κ 8 γ H γ[0, ) = H. 6

0 0 0 (a) (b) (c) (a) 0 < κ 4 SLE (b) ( ) H H 4 < κ < 8 SLE (c) H κ 8 SLE 7

0 < x < x < x < { } σ = inf t > 0 : Xt x = x or Xt x = x φ(x) = φ(x; x, x ) = P(X x σ = x ) φ(x ) = 0, φ(x ) = t σ min{t, σ},. M t = φ(x x t σ ) ] M t = E [φ(x σ x ) F t E[M t F s ] = M s, 0 s t M t 8

(φ(x) ) BES d SDE (3) [ t σ M t = φ(x) + φ (Xs x ) db s + d ] ds t σ 0 Xs x + 0 φ (Xs x )(db s) t σ [ t σ = φ(x) + φ (Xs x )db s + φ (Xs x 0 0 ) + d ] Xs x φ (Xs x ) ds. M t ( ) φ (x) + d x φ (x) = 0, x < x < x (0) φ(x ) = 0, φ(x ) = x d x d x d x d d φ(x) = φ(x; x, x ) = () log x log x d = log x log x 9

(i) d > d < 0 () x = L > x φ(x; 0, L) lim x 0 φ(x; x, L) = lim x 0 x d x d L d x d =. x > 0 BES d L > 0 T x = inf{t > 0 : Xt x = 0} = d = () φ(x; 0, L) = lim x 0 T x = log x log x log L log x = 0

(ii) α > x k = α k x, k =,, 3,... d > d β < 0 () φ(x k ; x k, x k+ ) = xβ k xβ k x β k+ xβ k = αβ α β = α β + >. = αkβ α (k )β α (k+)β α (k )β Z {,,, 0,,, } n > 0, n Z p = /(α β +), p BES d X x t, x > 0

(iii) () d = x = /n < x < x = e n, n φ(x; /n, e n ) = log x + log n n + log n 0 n > 0 Xt x /n (iv) d <, lim x 0 x d = 0 () L T x < φ(x; 0, L) = x d 0. L d

0 < x < y {T x = T y } 0 X sup t<t x y t Xx t Xt x <. () 0 < x < y ( y X Z t = log t Xt x ) Xt x = f(xt x, Xy t ), t < T x. (3) f(x, y) = log{(y x)/x}. 3

f x (x, y) = y x x, f y (x, y) = y x f xx (x, y) = (y x) + x, f yy (x, y) = (y x), f xy (x, y) = f yx (x, y) = (y x) 4

[ dz t = f x (Xt x, Xy t ) db t + d ] [ dt Xt x + f y (X xt, Xyt ) db t + d ] dt Xt y + ] [f xx (Xt x, Xy t ) + f xy(xt x, Xy t ) + f yy(xt x, Xy t ) dt = [ (3 ) Xt x db t + d (Xt x + d Xt y ] Xx t ) (Xt x) Xt y dt (4) t r r(t) ds 0 (Xs x = t. ) dr(t)/(xx r(t) ) = dt. (4) r(t) dz r(t) = X r(t) x db r(t) + ( 3 d ) + d X y r(t) Xx r(t) X y r(t) dr(t) (X x r(t) ) 5

(d B t ) = B t = r(t) 0 db s X x s (X r(t) x )(db r(t) ) = dr(t) (X r(t) x = dt ) B t BM Z t = Z r(t) d Z t = d B t + SDE. ( 3 d ) + d X y r(t) Xx r(t) dt (5) X y r(t) 6

(i) 3 < d < d (3/, d) ε = (d d ) d y = ( + ε/)x { σ = inf t > 0 : X y r(t) Xx r(t) = εxy r(t) 0 t < T x σ (X y r(t) Xx r(t) )/Xy r(t) ε (5) } ( ) 3 d + d X y r(t) Xx r(t) X y r(t) ( ) 3 d + d (d d ) d = 3 d 7

Z t d Z t = d B t + ( ) 3 d dt, Z 0 = Z 0 = log ε Z t Z t, 0 t < T x σ d > 3/ Z t. Z t log(ε/) log ε Z t log ε ( y X log t Xt x ) Xt x < log ε Xy t Xx t X x t () P(T x = T y ) > 0 < ε 8

(ii) d 3 3/ d 0 X y r(t) Xx r(t) X y r(t) > 0, 0 t < T x sup Z t = sup e Z y t X = sup t Xx t t<t x t<t x t<t x P(T x = T y ) = 0 X x t = 9

G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) 30