agora04.dvi

Similar documents
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

Chapter (dynamical system) a n+1 = 2a n ; a 0 = 1. a n = 2 n f(x) = 2x a n+1 = f(a n ) a 1 = f(a 0 ), a 2 = f(f(a 0 )) a 3 = f(f(f(a

Chapter 3 Mathematica Mathematica e a n = ( ) n b n = n 1! + 1 2! n! b n a n e 3/n b n e 2/n! b n a n b n M athematica Ma

n ( (

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

°ÌÁê¿ô³ØII

II 2 II

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

function2.pdf

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

mugensho.dvi

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n


1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

DVIOUT

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

( )

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

DVIOUT-HYOU

85 4

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %


熊本県数学問題正解

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

untitled

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.


I

Part () () Γ Part ,

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1


untitled


x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

2000年度『数学展望 I』講義録

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,


ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

1

重力方向に基づくコントローラの向き決定方法

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

数学の基礎訓練I

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

Jacobson Prime Avoidance


1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

ii

高等学校学習指導要領解説 数学編

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

29

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.


.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

地価・賃料の状況と今後の動向1

) 9 81

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

数学Ⅱ演習(足助・09夏)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,


1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

等質空間の幾何学入門

入試の軌跡

『共形場理論』

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

,2,4

mobius1

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

Transcription:

Workbook E-mail: kawahira@math.nagoya-u.ac.jp 2004 8 9, 10, 11 1 2 1 2 a n+1 = pa n + q x = px + q a n better 2 a n+1 = aan+b ca n+d 1 (a, b, c, d) =(p, q, 0, 1) 1 = 0 3 2 2 2 f(z) =z 2 + c a n+1 = a 2 n + c ver. 20040818 1

1 1.1 (numerical sequence) a 1,a 2,a 3,..., a 1000,a 1001,..., a 10000,a 10001,... a n = n 1, 2, 3,..., 1000, 1001,..., 10000, 10001,... a n =(n ) 2, 3, 5, 7, 11,... a n =(n ) n a n ( general term formula) a n = n 3 6n 2 +12n 6 a 1 =1, a 2 =2, a 3 =3 a 4 4 n 1000 a n = n n>1000 a n n a n =(n ) 1.2 2 (recursive formula) a n+1 a n a n+1 = a n +1; a 1 =0 a n+1 =5a n ; a 1 = π a n+1 =2a n +1; a 1 =1 a n+1 =(n +1)a n ; a 1 =1 a n+1 = a 2 n 2a n ; a 1 =1 2

1.3 2 a n+1 = pa n + q ; a 1 = a p =1 p 1 Step 1 x = px + q x = α := q 1 p Step 2 α = pα + q a n+1 α = p(a n α). Step 3 b n = a n α Step 2 b n+1 = pb n ; b 1 = a 1 α = a α. Step 4 {b n } b 1 = a α p b n =(a α)p n 1. Step 5 a n = b n + α =(a α)p n 1 + α. (1) a n+1 =2a n +1; a 1 =1 (2) a n+1 = a n 4 +3; a 1 =4 1.4 a n+1 =2a n +1; a 1 =1 3

b n+1 =2b n ; b 1 =2 b 0,b 1,b 2,... B a n b n = a n +1 a 0,a 1,a 2,... A A B B b n b n+1 =2b n ; b 1 =2 P B n P b n P 1 b n+1 =2b n 1 P b 1 =2 B B..., 2, 1, 0, 1, 2, 3, 4,... P X 1 g(x) =2X B g(x) =2X (dynamical system) P 1 X = 3 P 1 3 3 2 3 2 2 3 2 3... X = 3 g(x) (orbit) 1. a n b n 4

2. A B A x 3. A f(x) 4. A B A B A B P P A B a n+1 = pa n + q ; a 1 = a A f(x) x = px + q 5

1.5 R 1, 2, 3,... 0 y = f(x) x 1 f(x) R f (dynamics) x x f(x) f(f(x)) f(f(f(x)))... x f (orbit) f(f(f(x))) f 3 (x) f(x) 3 {f(x)} 3 x (initial value) f x = f(x) ( fixed point) f(x) =2x+1 x = 1 n f n (x) ={f(x)} n p y = f(x) p f(p) f(f(p)) f(f(f(p)))... y = f(x) xy (p, p) (f(p),f(p)) Step 1 (p, p) y = f(x) (p, f(p)) Step 2 y = x (f(p),f(p)) y = x p (graphical analysis) web diagram 6

y = f(x) y = x y f(p) y = x p y = f(x) O p f(p) x y =2x, y =2x +1 p 1.6 a n+1 = 3a n +2 a n +2 ; a 1 = 1 (1.0) 3x +2 x = x = 1, 2 x = 1 x +2 a n+1 ( 1) = 3a n +2 a n +2 ( 1) a n+1 +1= an +1 a n +2 x =2 (1.1) (1.2) a n+1 2= 3a n +2 a n +2 2 a n+1 2= an 2 a n +2 a n+1 +1 a n+1 2 = an +1 a n 2 7 (1.1) (1.2)

b n = {(a n +1)/(a n 2)} b 1 = (a 1 +1)/(a 1 2) = 2 b n = a n +1 a n 2 = a n =. 8

2 a n+1 = 3a n +2 a n +2 ; a 1 = 1 (1.0) 3x +2 A x f(x) = x +2 b n B X g(x) =4X A B a n+1 =2a n +1 A B 2 2.1 R + ˆR R xy x R (X, 0) X (0, 1 2 ) 1 2 C (0, 1) N N (X, 0) C N P X. C N C N R X X = 100000 00 1 P N X 100000 00 P N N 9

y C N P O X x R 1: ˆR N (point at infinity) C C N=R C = R ˆR 1 X C (x, y) X C (x, y) X ˆR C = ˆR 0 1 2 3 4 R C = ˆR ˆR x + x = x + = 1 (extended reals) Cf. C = R { } 10

x X X + x, x + X, X C N= X 0 x x = x = x =0 x 0 =, ±, /, 0. x = (1) x +1 x 2 x +1 x 2 = 1+ 1 x 1 2 x (3) 1 x (2) 3x +1 (4) x2 1 x 2 4 T (x) = x +1 xy x 2 T (x) ˆR ˆR 11

a, b, c, d ad bc 0 ˆR T (x) = ax + b cx + d 2 T,Möbius transformation with real coefficients T R T (x) = x = 1 x +0 0 x +1 ad bc =0 1 A= R f(x) =2x +1 B= R g(x) =2X ˆR X = T (x) =x +1 2 ˆR T 12

x ˆR Â X ˆR ˆB +2 Â f(x) =3x x +2 ˆB g(x) =4X X = T (x) = x +1 x 2 P ˆR P P f g P f(x) =x +1 g(x) =4x f(x) = ax + b cx + d (ad bc 0) x = f(x) x = ax + b cx + d (a, b, c, d) =(1, 0, 0, 1) ˆR (*) 13

c =0 ad bc = ad 0 d 0 f(x) = ax + b d (*) =: px + q x = f(x) x = px + q 2 ˆR 3 x = x = x = c 0 q 1 p x = ax + b cx + d cx2 +(d a)x b =0 2 (*) 3 Case 1 ˆR Case 2 ˆR Case 3 ˆR 2 3 p =1 Case 1 Case 2 Case 1 g(x) =rx (r 0, 1) 3x +2 r f(x) = x +2 Case 2 g(x) =X + d (d 0) 3 R 14

d f(x) = 3x +1 x +5 Case 3 (*) ˆR (*) x = x +1 x +1 f(x) = x +1 x +1 x 2 = 1 (1) R a n+1 = a n +1 a n +1 ; a 1 = a ˆR a 4 1 7 Case 3, f ˆR ˆR 15

2 x cos θ + sin θ 1 8 y = (θ =2π/5) x sin θ + cos θ sin, cos 1. 5 2. 5 ˆR 16

3 2 3.1 xyz xy C (X, Y, 0) Z = X + Yi (0, 0, 1) 2 1 S N :(0, 0, 1) Z 2 S P P Z S N C S N=C 2 Z P N N S = C { } (Riemann sphere) Ĉ S N P Z C 2: Ĉ a n =(2i) n n = 0, 1, 2,... {a n } = {1, 2i, 4, 8i, 16, 32i,...}. Z = a n S = Ĉ P N 3 a n =( i/2) n S (x, y, z) Z x, y, z Z = X+Yi S Z 17

i Ri z =1 i 1 0 1 1 0 1 R i i 3: Z =(x + yi)/(1 z),x= X/(1 + Z 2 ), y = Y/(1 + Z 2 ),z = Z 2 /(1 + Z 2 ) 3.2 a, b, c, d ad bc 0 Ĉ T (z) = az + b cz + d Ĉ Ĉ a, b, c, d ˆR ˆR f(z) = az + b cz + d 18 (ad bc 0)

z = f(z) z = az + b cz + d (a, b, c, d) (1, 0, 0, 1) (*) 3 Case 1 ˆR Case 2 ˆR Case 3 ˆR 2 f (*) 4: Case 1 Case 3 (*) (*) ˆR f(z) = z +1 z +1 z = z +1 z +1 z 2 = 1 z = ±i. (2) 2 ±i f f Z = T (z) = z i z + i i, i f 19

5: Case 2 6: Case 3 45 60 20

0 1 1 0 0 T 1 f 1 T i i f f 1 0 T i 1 i T i f T i 1 g(z) =iz g T (f(z)) = g(t (z)) g(z) =iz g 4 (Z) = i 4 Z = Z Z 4 f z 4 T ˆR T Ĉ Ĉ f Case 3 1 λ 1 g(z) =λz g Z Z λ Z λ 2 Z λ 3... 1 arg λ f ˆR 3.3 2 f(z) =z 2 + c A 0,B,C 2 f(z) =Az 2 + Bz + C f( ) = 21

3 1 A Af(z) =A 2 z 2 + ABz + Ac =(Az + B 2 )2 B2 4 + AC Af(z)+ B 2 =(Az + B 2 )2 B2 4 + B 2 + AC. T (z) =Az + B 2 c = B2 4 + B 2 T (f(z)) = {T (z)} 2 B2 4 + B 2 + AC + AC z f f(z) T T (z) T {T (z)} 2 + c T f T (z) {T (z)} 2 + c Z = T (z) f g(z) =Z 2 + c 2 2 1 c c 2 c =0 c z 2 + c R Java OTIS http://www.math.nagoya-u.ac.jp/~kawahira/programs/otis.html 22

c f c (z) =z 2 + c z z f c z 2 + c f c (z 2 + c) 2 + c f c ( ) z z z > 100 f c (z) = z 2 (1 + c z ) = z 2 1+ c 1+ c. > 10000 2 z 2 z 2 c < 10 c = c < 0.001 z 2 z 2 0.1 10000 f(z) z K c =( ( ) z ) z K c K c K c f c (filled Julia set) K c f c (Julia set) c =0 f c (z) =f 0 (z) =z 2 K 0 K c c K c K c M := (K c c ) (Mandelbrot set) c 7 c K c K c (fractal) 23

7: 90 24

4 1 1. y =2x +1 10 5-10 -5 5 10-5 -10 25

2. y =2x 10 5-10 -5 5 10-5 -10 26

3. y = x 3 2x 4 3 2 1-4 -2 2 4-1 -2-3 -4 27

4. y = 3x +2 x +2 10 5-10 -5 5 10-5 -10 28

5. y =4x 10 5-10 -5 5 10-5 -10 29

6. y = x +1 x 2 10 5-10 -5 5 10-5 -10 30

7. y = x +1 x +1 10 5-10 -5 5 10-5 -10 31

8. y = x cos θ + sin θ x sin θ + cos θ (θ =2π/5) 10 5-10 -5 5 10-5 -10 32

9. y = x 2 5 4 3 2 1-4 -2 2 4-1 -2-3 33

10. y = x 2 +0.25 5 4 3 2 1-4 -2 2 4-1 -2-3 34

11. y = x 2 +0.35 5 4 3 2 1-4 -2 2 4-1 -2-3 35

12. y = x 2 +0.10 5 4 3 2 1-4 -2 2 4-1 -2-3 36

13. y = x 2 1 5 4 3 2 1-4 -2 2 4-1 -2-3 37

5 2 (complex number)z 2 x, y i 2 = 1 i z = x + yi y =0 x C z = x + yi xy (x, y) (complex plane) x R (real axis) z z 0 x 2 + y 2 z (absolute value) (modulus) z arg z z (argument) y z = x + yi arg z 0 x z R i i 2 1 2 z = x + yi, w = u + vi z + w =(x + u)+(y + v)i z w =(x u)+(y v)i z + w w r z (r >1) z 0 z = x + yi x yi 38

2 z = x + yi, w = u + vi zw =(xu yv)+(xv + yu)i 1 z = x yi ( z 0) x 2 + y2 z w = z 1 w = (xu + yv)+( xv + yu)i u 2 + v 2 ( w 0) zw z = x + yi r r z = r(x + yi) =rx + ryi r r i i z = x + yi i z = i(x + yi) =xi + yi 2 = y + xi 90 iz = y + xi z = x + yi 0 R 1 180 i i = 1 1 i i 90 90 =180 39

2 z = x + yi, w = u + vi z w =(x + yi)w = xw + y(iw). z w z y iw y iw x w 0 x w 0 zw = z w zw w w z arg z arg zw = arg z + arg w. 360. 2 2 ax 2 + bx + c =0 D = b 2 4ac 0 x = b ± D 2a D <0 x = b D 2a ± 2a i 2 A z = x + yi (1) i 3 (2) (2 + i)(2 i) (3) ( i 2 ) 2 40

(4) 1 1+i (5) ( 1+ 3i) 3 B z = x+yi z 2 z w = z 2 41

C (1) x 2 +1=0 (2) z 2 + z +1=0 (3) z 3 =1 (4) z 4 =1 (5) z 5 =1 A: (1) i (2) 5 (3) 1 4 (4) 1 i (5) 8. 2 B: z 2 = z z z 2 z 2 z 1 w = z 2 2 C (1) ±i (2) 1 ± 3i (3) z 3 1=(z 1)(z 2 + z +1)=0, 2 1 (4), (5) 5 42

6 (1) 30 1989 (2) 1982 (3) I II (1998?) (4) (2002) (2) (3) II (4) (5) 1996 (6) 1995 (7) 1987 (8) R.L.Devaney 2 (2003) (9) (1997) (6) (7) (8) (9) (8) (8) (9) CG Web http://www.math.nagoya-u.ac.jp/~kawahira/ 43