FCH2JU は欧州全体の水素 燃料電池技術開発をリードしており 主に交通 エネルギーシステム 分野横断型のプログラムを実施している 定量目標 戦略名称 関連主体 期間 予算 定性目標 FCV 水素 ST 需給量 第 2 期燃料電池水素共同実施機構 (FCH2JU) 欧州委員会 Hudrogen E

Similar documents
電解水素製造の経済性 再エネからの水素製造 - 余剰電力の特定 - 再エネの水素製造への利用方法 エネルギー貯蔵としての再エネ水素 まとめ Copyright 215, IEEJ, All rights reserved 2

目次 1. 実施内容について 背景と目的 2. 海外 P2G 事例 3. FSの中間報告 システム機能概要図 主要設備仕様案 主要設備面積試算と水素量試算 想定スケジュール 技術的要件 送電線 FSにおける今後の検討スケジュール 2017 Toshiba Corporation / Tohoku-E

目次 1. 策定の趣旨 2 2. 水素利活用による効果 3 3. 能代市で水素エネルギーに取り組む意義 5 4. 基本方針 7 5. 水素利活用に向けた取り組みの方向性 8 6. のしろ水素プロジェクト 10 1

第 3 回 WG での事業者プレゼン概要 再エネ発電事業者によるプレゼン概要 再生可能エネルギー電源は そのまま水素製造用途とするには高コストであり 他方で出力抑制分を活用する場合は供給安定性が低いということを踏まえ 計画段階からある程度の規模の余剰電力を見込んで発電プラントを建設 運営することも考

水素供給設備整備事業費補助金平成 28 年度概算要求額 62.0 億円 ( 新規 ) 省エネルギー 新エネルギー部燃料電池推進室 事業の内容 事業イメージ 事業目的 概要 燃料電池自動車 (FCV) は 水素を燃料とする自動車で 内外の自動車メーカーによって 開発競争が進め

海外視察内容のご報告 2016 年 12 月 22 日 株式会社野村総合研究所グローバル製造業コンサルティング部

1 WG 設置の背景と目的 2 欧州のCO2フリー水素活用に向けた動向 2-1 CO2フリー水素の定義 2-2 CO2フリー水素の利活用ポテンシャル 2-3 CO2フリー水素ユースケース 2-4 CO2フリー水素の認証制度設計の取り組み 3 我が国の水素需要動向とCO2フリー水素への代替可能性 (

資料1:地球温暖化対策基本法案(環境大臣案の概要)

平成 21 年度資源エネルギー関連概算要求について 21 年度概算要求の考え方 1. 資源 エネルギー政策の重要性の加速度的高まり 2. 歳出 歳入一体改革の推進 予算の効率化と重点化の徹底 エネルギー安全保障の強化 資源の安定供給確保 低炭素社会の実現 Cool Earth -1-

第 2 章各論 1. フェーズ 1( 水素利用の飛躍的拡大 ) 1.2. 運輸分野における水素の利活用 FCV は 水素ステーションから車載タンクに充填された水素と 空気中の酸素の電気化学反応によって発生する電気を使ってモーターを駆動させる自動車であり 一般ユーザーが初めて水素を直接取り扱うことにな

UIプロジェクトX

水素エネルギーに関するNEDOの取り組み

Microsoft PowerPoint _04_槌屋.ppt [互換モード]

MARKALモデルによる2050年の水素エネルギーの導入量の推計

.C.O \..1_4

熱効率( 既存の発電技術 コンバインドサイクル発電 今後の技術開発 1700 級 ( 約 57%) %)(送電端 HV 級 ( 約 50%) 1500 級 ( 約 52%

第 3 章隠岐の島町のエネルギー需要構造 1 エネルギーの消費量の状況 ここでは 隠岐の島町におけるエネルギー消費量を調査します なお 算出方法は資料編第 5 章に詳しく述べます (1) 調査対象 町内のエネルギー消費量は 電気 ガス 燃料油 ( ガソリン 軽油 灯油 重油 ) 新エ ネルギー (

Microsoft Word 後藤佑介.doc

International Institute for Carbon-Neutral Energy Research 1 水電解による水素製造の展望 九州大学カーボンニュートラルエネルギー国際研究所 電気化学エネルギー変換研究部門 松本広重

A.3 排出削減量の算定方法 A.3.1 排出削減量 ER EM BL EM PJ ( 式 1) 定義単位 数値 4 ER 排出削減量 1 kgco2/ 年 0 t<1 年 年 t<2.5 年 年 <t EM BL ベースライン排出量 2 kgco2/

御意見の内容 御意見に対する電力 ガス取引監視等委員会事務局の考え方ることは可能です このような訴求は 小売電気事業者が行うことを想定したものですが 消費者においても そのような訴求を行っている小売電気事業者から電気の小売供給を受け 自らが実質的に再生可能エネルギーに由来する電気を消費していることを

<4D F736F F D E9197BF342D32817A B7982D BF CC8EA993AE8ED482C98AD682B782E990A28A458B5A8F708B4B91A582CC93B193FC8B7982D18D B4B91A D A89BB82C982C282A282C42E646F6378>

PowerPoint プレゼンテーション

公開用_ZEB(ネット・ゼロ・エネルギー・ビル)の定義と評価方法(150629)

PowerPoint プレゼンテーション


目次 1. 諸外国における取り組み (1) ドイツ (2) 米国 (3) その他 2.NEDO における取り組み (1) 水電解技術 (2) Power to Gas 2

分散型エネルギーによる 発電システム 博士 ( 工学 ) 野呂康宏 著 コロナ社 コロナ社

本資料で いている 葉の定義 グリーン水素 再生可能エネルギー由来の低炭素な水素 グリーン電 再生可能エネルギーで発電する低炭素な 電 2

アジア/世界エネルギーアウトルック 2013

はじめに 福島県は復興の大きな柱として 福島を 再生可能エネルギー先駆けの地 とすべく 再生可能エネルギーの拡大 関連する産業の集積 研究開発を進めている 2012 年 3 月に改訂された 福島県再生可能エネルギー推進ビジョン ( 改訂版 ) においては 2040 年頃を目途に福島県内の 1 次エネ

PowerPoint プレゼンテーション

内の他の国を見てみよう 他の国の発電の特徴は何だろうか ロシアでは火力発電が カナダでは水力発電が フランスでは原子力発電が多い それぞれの国の特徴を簡単に説明 いったいどうして日本では火力発電がさかんなのだろうか 水力発電の特徴は何だろうか 水力発電所はどこに位置しているだろうか ダムを作り 水を

海外における 水素導入の現状調査

水素の 利用 輸送 貯蔵 製造2030 年頃 2040 年頃庭用海外 水素 燃料電池戦略ロードマップ概要 (2) ~ 全分野一覧 ~ 海外の未利用エネルキ ー ( 副生水素 原油随伴カ ス 褐炭等 ) 水素の製造 輸送 貯蔵の本格化現状ナフサや天然カ ス等フェーズ3: トータルでのCO2フリー水素供

参考資料 1 約束草案関連資料 中央環境審議会地球環境部会 2020 年以降の地球温暖化対策検討小委員会 産業構造審議会産業技術環境分科会地球環境小委員会約束草案検討ワーキンググループ合同会合事務局 平成 27 年 4 月 30 日

□120714システム選択(伴さん).ppt

B.2 モニタリング実績 (1) 活動量 ( 燃料消費量 生成熱量 生産量等 ) 記号 モニタリング項目 定義 単位 分類 1 モニタリング方法 概要 頻度 実績値 モニタリング実績 計測対象期間 ( 年月日 ~ 年月日 ) 備考 F PJ,biosolid プロジェクト実施後のバイオマス固形燃料使

問題意識 民生部門 ( 業務部門と家庭部門 ) の温室効果ガス排出量削減が喫緊の課題 民生部門対策が進まなければ 他部門の対策強化や 海外からの排出クレジット取得に頼らざるを得ない 民生部門対策において IT の重要性が増大 ( 利用拡大に伴う排出量増加と省エネポテンシャル ) IT を有効に活用し

北杜市新エネルギービジョン

水素 燃料電池ロードマップにおける CO2 フリー水素の位置づけ 水素 燃料電池戦略ロードマップ (2016 年 3 月改訂 ) においては より CO2 の排出が少ない水素供給構造を実現していくため 将来的には再生可能エネルギーの活用等を進めていくことが必要とされている 2040 年頃をターゲット

低炭素経済ロードマップ 2050 の概要 ブリュッセル事務所 欧州ロシア CIS 課 Report 3 欧州委員会は2011 年 3 月 8 日 EUが2050 年までに低炭素経済に移行する道筋を描いた 低炭素経済ロードマップ2050 を提案した 2050 年までに温室効果ガス (GHG) を199

目次 再エネ由来水素の利活用 東芝での取組み 技術開発 今後の展開 2

SPERA 水素技術の紹介 - 技術概要 - 有機ケミカルハイドライド (OCH) 法 CH 3 メチルシクロヘキサン (MCH) 輸送 水素 CH 3 水素 水素化 貯蔵 トルエン 貯蔵 脱水素 CH 3 CH 3 輸送 CH 3 CH 3 + 3H 2 ΔH= -205kJ/mol トルエン M

1. 世界における日 経済 人口 (216 年 ) GDP(216 年 ) 貿易 ( 輸出 + 輸入 )(216 年 ) +=8.6% +=28.4% +=36.8% 1.7% 6.9% 6.6% 4.% 68.6% 中国 18.5% 米国 4.3% 32.1% 中国 14.9% 米国 24.7%

取組概要 ( 申請書からの転記 ) 全 般 排 出 量 の 認 識 取組名称 認証取得者名取組の概要 適用したカーボン オフセット第三者認証基準のバージョン認証の有効期間オフセット主体認証ラベルの使途 認証対象活動 認証番号 :CO 有効期間満了報告書受領済み 持続可能な島嶼社会の発展に

スライド 1

23 年のエネルギーミックス 一次エネルギー供給構成 発電構成 6 原油換算百万 kl 億 kwh % 24% 再生可能 ( 含水力 ) 原子力 % 1% ,666 9,88 1,65 17% 程度の省エネ 再生可能 22~24

2007年12月10日 初稿

次世代エネルギーシステムの提言 2011 年 9 月 16 日 株式会社日本総合研究所 創発戦略センター Copyright (C) 2011 The Japan Research Institute, Limited. All Rights Reserved.[tv1.0]

Microsoft PowerPoint - Itoh_IEEJ(150410)_rev

資料3-1 温室効果ガス「見える化」の役割について

<4D F736F F F696E74202D E9197BF A A C5816A CE97CD82CC90A28A458E738FEA2E B8CDD8AB B83685D>

バイオマス比率をめぐる現状 課題と対応の方向性 1 FIT 認定を受けたバイオマス発電設備については 毎の総売電量のうち そのにおける各区分のバイオマス燃料の投入比率 ( バイオマス比率 ) を乗じた分が FIT による売電量となっている 現状 各区分のバイオマス比率については FIT 入札の落札案

PowerPoint プレゼンテーション

水素 燃料電池戦略ロードマップ改訂の内容 フェーズ 1: 水素利用の飛躍的拡大 ( 現在 ~) 1. 定置用燃料電池 ( エネファーム / 業務 産業用燃料電池 ) エネファームの将来的な目標価格を明確化 2020 年頃に自立的普及 PEFC( 固体高分子形燃料電池 ) 型 :2019 年までに 8

富士フイルムホールディングス、電力と蒸気を自然エネルギー由来100%に

2017 年訪日外客数 ( 総数 ) 出典 : 日本政府観光局 (JNTO) 総数 2,295, ,035, ,205, ,578, ,294, ,346, ,681, ,477

緒論 : 電気事業者による地球温暖化対策への考え方 産業界における地球温暖化対策については 事業実態を把握している事業者自身が 技術動向その他の経営判断の要素を総合的に勘案して 費用対効果の高い対策を自ら立案 実施する自主的取り組みが最も有効であると考えており 電気事業者としても 平成 28 年 2

CHIYODA PowerPoint Format


地球温暖化対策のための税の効果について 1. 平成 20 年 11 月中央環境審議会グリーン税制専門委員会 環境税等のグリーン税制に係るこれまでの議論の整理 より 税収を温暖化対策の費用に充てる 又は温暖化対策に係る減税に活用する場合 CO 2 削減に関し大きな効果が見込める ( 前略 ) 環境利用

スライド 1

(2) 技術開発計画 1 実施体制 技術開発代表者 戸田建設株式会社 ( 全体調整 ( 設計 調達 建造 運用 検証 )) 佐藤郁構造工学 情報工学分野について 23 年間の業務実績 小林修構造工学分野について 28 年間の業務実績 西田哲哉実施体制強化のため専任研究補助員を増員 2 実施スケジュー

CO2 フリー水素ワーキンググループ報告書 目次 Ⅰ. 水素 燃料電池戦略ロードマップでの位置づけ / 本 WG の設置趣旨... 1 Ⅱ. 再生可能エネルギー普及拡大への対応 余剰電力の考え方 4 (1) 再生可能エネルギー発電の導入拡大に向けた取組と余剰電力... 4 (2) 余

お知らせ

1クラブメンバー 10 名の年間交通移動 ( クラブの主将として現在活動頂いております NMB48 加藤夕夏さんの年間交通移動を含む ) 2 運営事務局責任者 1 名の年間交通移動 クラブ活動会場のどうぎんカーリングスタジアムの年間電気使用 1 平均月間電気使用量実績 (2014 年 2 月 ~20

Microsoft Word - みやぎ水素エネルギー利活用推進ビジョン

Microsoft Word - 基本計画(バイオジェット)_

資料 2 接続可能量 (2017 年度算定値 ) の算定について 平成 29 年 9 月資源エネルギー庁

RIETI Highlight Vol.66

2017 電波産業調査統計

今回の調査の背景と狙いについて当社では国のエネルギー基本計画の中で ZEH 普及に関する方針が明記された 200 年より 実 邸のエネルギー収支を調査し 結果から見えてくる課題を解決することが ZEH の拡大につなが ると考え PV 搭載住宅のエネルギー収支実邸調査 を実施してきました 205 年

スライド 1

中国国内需給動向と中露石油ガス貿易

ITI-stat91

グリーンエネルギー普及拡大における太陽光発電の寄与

Microsoft PowerPoint 伊原_HSE.ppt [互換モード]

05JPOWER_p1-40PDF.p....

第2回アジア科学技術フォーラム

<4D F736F F F696E74202D D34966B8BE38F428E735F907B8E52976C C835B83932E B93C782DD8EE682E890EA97705D>

Trung Tâm Phát Triển Sáng Tạo Xanh

<8CF68A4A E94728F6F8DED8CB88E968BC68C7689E62E786C73>


PowerPoint プレゼンテーション

新興国市場開拓事業平成 27 年度概算要求額 15.0 億円 (15.0 億円 ) うち優先課題推進枠 15.0 億円 通商政策局国際経済課 商務情報政策局生活文化創造産業課 /1750 事業の内容 事業の概要 目的 急速に拡大する世界市場を獲得するためには 対象となる国 地

(2) ベースラインエネルギー使用量 それぞれの排出起源のベースラインエネルギー使用量の算定方法は以下のとおり 1) 発電電力起源 EL BL = EL ( 式 1) 記号定義単位 ELBL ベースライン電力使用量 kwh/ 年 EL 事業実施後のコージェネレーションによる発電量 kwh/ 年 2)

ドイツで大規模ハイブリッド蓄電池システム実証事業を開始へ

資料2  SJAC提出資料

<4D F736F F F696E74202D203033A28AC28BAB96E291E882C6B4C8D9B7DEB05F89FC92E894C55F88F38DFC B8CDD8AB B83685D>

Microsoft PowerPoint - RITE-N-膜-岡崎

<4D F736F F F696E74202D F43444D838D815B D B988C493E089F090E08F91816A5F8CF68EAE94C5>

( 太陽光 風力については 1/2~5/6 の間で設定 中小水力 地熱 バイオマスについては 1/3~2/3 の間で設定 )) 7 適用又は延長期間 2 年間 ( 平成 31 年度末まで ) 8 必要性等 1 政策目的及びその根拠 租税特別措置等により実現しようとする政策目的 長期エネルギー需給見通

企画書タイトル - 企画書サブタイトル -

鹿児島県海洋再生可能エネルギー開発可能性調査仕様書

番号文書項目現行改定案 ( 仮 ) 1 モニタリン 別表 : 各種係 グ 算定規程 ( 排出削 数 ( 単位発熱量 排出係数 年度 排出係数 (kg-co2/kwh) 全電源 限界電源 平成 21 年度 年度 排出係数 (kg-co2/kwh) 全電源 限界電源 平成 21 年度 -

平成 30 年度朝倉市地球温暖化対策実行計画 ( 事務事業編 ) 実施状況報告書 ( 平成 29 年度実績 ) 平成 30 年 9 月 朝倉市環境課

電気事業者による再生可能エネルギー電気の調達に関する特別措置法改正に関する意見書


Transcription:

FCH2JU は欧州全体の水素 燃料電池技術開発をリードしており 主に交通 エネルギーシステム 分野横断型のプログラムを実施している 定量目標 戦略名称 関連主体 期間 予算 定性目標 FCV 水素 ST 需給量 第 2 期燃料電池水素共同実施機構 (FCH2JU) 欧州委員会 Hudrogen Europe N.ERGH 2014~2020 年 N/A 2050 年の低炭素経済のため 2014~2020 年にかけて 燃料電池 水素技術を 欧州のエネルギー及び交通システムの主要手段の 1 つとすることを目指す 250 万台 (2020 年 )/2,500 万台 (2030 年 ) EU HyWays European Hydrogen Energy Roadmap(2008 年 ) の値 N/A N/A 予算配分 EU 目標値 (1990 年比 ) FCH2JU:2014-2020 年の予算配分 (2017 年 1 月時点 ) CO2 削減目標再エネ導入率エネルギー効率 2020 年 2030 年 2050 年 -20% +20% -40% +27% -80%~ -95% +20% +27% - - プロジェクト数 :36 標準化 安全性 普及啓発 エネルギー プロジェクト数 :114 水素製造 水素貯蔵 燃料電池等 49% 分野横断 5% 39million 43 億円 354million 392 億円 46% 337million 373 億円 運輸部門 プロジェクト数 :52 FCV 水素 ST 燃料電池鉄道等 1 出所 :FCHJU HCH2JU 2014-2020plan より作成

FCH JU の成果報告会 (2017 年 11 月 22 日 ) では 水素 燃料電池技術は中長期的な気候変動対策に重要な役割を果たすことが強調された FCH JU Stakeholder Forum(2018 年 ) のアジェンダと発表内容の一例 セッション テーマ 発表者 発表内容の一例 Ⅰ 水素に関するイノベーションについて 欧州委員会研究総局 出版局 エネルギー総局 / Air Liquide( フランス ) Siemens ( ドイツ ) 既存の技術 インフラを活用することで コストを抑えて水素需要 供給を増大させることを目指す (Air Liquide) 水素のエネルギー密度を活かした長距離輸送のアプリケーションの製品化を目指す (Siemens) Ⅱ 水素の経済性について Hydrogen Council / Ballard( カナダ ) / Hydrogenics( カナダ ) / NEL Hydrogen( ノルウェー ) / SOLIDpower( オーストラリア ) / Voestalpine( オーストリア ) / Tower Transit( シンガポール ) 水素の大量導入により CO2 排出量を約 60 億 t-co2/ 年を削減することができる (Hydrogen Council) 中国は大きな水素 燃料電池のマーケットになり得る (Ballard) Ⅲ グローバル視点での水素社会について 環境省 ( オランダ ) / DOE( 米国 ) / NEDO( 日本 ) / NOW( ドイツ ) / Energy and Industrial Strategy( イギリス ) /Wuhan University of Technology( 中国 ) オランダでは早期の ZEV 規制を想定しており FCV も選択肢になり得る ( 環境省オランダ ) エネルギーセキュリティーとしての水素の検討を進める (DOE 米国 ) 水素は再生可能エネルギー導入拡大のための貯蔵としての役割がある (NOW ドイツ ) Ⅳ イノベーションに向けた協業について Hydrogen Europe Research / VTT Technical Research Center Finland( フィンランド ) / ドイツ航空宇宙センター / フランス国立科学研究センター / ノルウェー産業科学技術研究所 水蒸気から水素を抽出するエネルギー源として 集光型太陽熱発電の鏡の仕組みを検討 ( ドイツ航空宇宙センター ) 水力由来の水素を輸出することを検討 ( ノルウェー産業科学技術研究所 ) Ⅴ 水素の将来展望について FCH JU 欧州委員会運輸総局 研究総局 エネルギー総局 水素 燃料電池技術は中長期的な気候変動対策に重要な役割を果たす (FCH JU) 今までの実証事業を振り返り 市場影響力が高い技術の商業化に注力する段階である ( 欧州委員会研究総局 ) 2

低炭素 非低炭素 < 参考 : グリーン水素に係る認証スキームの検討状況 (1/3)> 欧州では FCH2JU のプログラムの一つ CertifHy において 民間企業協力の下 Green H 2 の定義及びその認証スキームが議論されている FCH2JU における分野横断型プロジェクト例 : CertifHy プロジェクト名 ( 期間 ) プロジェクト概要 CertifHy (Phase1: 2014 年 11 月 ~2016 年 10 月 Phase2: 2017 年 10 月 ~2018 年 Phase3: 202X 年 ) Green H 2 の製造 活用を支援するため 欧州全体で活用可能な水素の GO *2 ( 水素発生源証明 ) スキームを開発 再生可能エネルギーの利用拡大 輸送業とエネルギー多消費型産業の脱炭素化の実現を図る Green H 2 の定義 GO スキーム活用例 GO (Guarantees of Origin) スキーム概要 ( 水素製造時 CO 2 排出量 ) 原料採掘から水素製造までの CO 2 排出量基準値 *1 : 91 g CO 2 eq /MJ H2 製造時 CO 2 排出量が基準に比べ 60% 以上低い水素を 低炭素と認証 閾値 : 36.4 g CO 2 eq /MJ H2 Green H 2 ( 再生可能エネルギーを活用して製造 ) Grey H 2 Low Carbon H 2 ( 原子力等 再生可能エネルギー以外を活用して製造 ) 認証 認証付与 Green H 2 製造者 認証 1 証書のみを取引き ( 環境価値が移転 ) 2 証書と組合わせることで Grey H2 を低炭素水素として取り扱い 3 直接調達せずとも環境価値の高い水素を取引可能となる Grey H 2 製造者 認証 Grey H 2 低炭素水素として取引 ユーザ *1: EU で一般的 (95% 以上 ) に販売されている水素として Best Available Technology による水素製造 ( 天然ガスの水蒸気メタン改質 ) 時に排出される CO 2 量を設定 *2: GO = Guarantees of Origin 出所 : CertifHy 公式ウェブサイト 3 2016 年 10 月 27 日 スキーム活用環境整備や実証運用プロジェクトの必要性を確認し Phase1 終了

< 参考 : グリーン水素に係る認証スキームの検討状況 (2/3)> 2017 年より Phase2 が開始され GO スキームの試行事業を開始 CertifHy プロジェクトの背景 概要 プロジェクト 背景 欧州の温室効果ガス排出削減目標達成のため エネルギー多消費産業の脱炭素化が求められており 水素を利用する石油精製業や化学産業における低炭素化が必要となっている 欧州では 水素は再生可能エネルギーの貯蔵が可能なエネルギーキャリアとして注目されており PtG が積極的に検討されている また 水素の燃料としての活用が運輸部門においても期待されている ( 燃料電池自動車 燃料電池バス等 ) 上記の取り組みを推進するため 低炭素な水素の環境価値の顕在化が求められている Phase1 2014-2016 水素発生源証明取引の短期的 長期的な市場規模の試算 グリーン水素の定義の検討 過去や既存の GO のプラットフォームの確認し 水素発生源証明取引の定義の調整 水素発生源証明取引の主な手法及び対象範囲の決定 検討概要 Phase2 2017-2018 水素発生源証明取引のステークホルダーの会合を設定 グリーン水素及び低炭素水素の発生源証明のスキームを決定 スキームを試行事業としてテスト 水素発生源証明取引の普及に向け 今後の取り組みを明確化 Phase3-202X 水素発生源証明取引の欧州への普及に向けた準備 水素発生源証明取引の規定 標準化の決定 最終化 出所 :CertifHy の Stakeholder Meeting より作成 4

< 参考 : グリーン水素に係る認証スキームの検討状況 (3/3)> Phase2 では 欧州での浸透を目的にスキームの標準化を検討 グリーン水素に係る認証スキームの標準化の検討状況 標準化の 目的 欧州でグリーン水素に係る認証スキームを展開 普及させていくためには 算定方法や手続き等の一貫性や整合性の確保が重要である そこで CertifHy プロジェクトでは 検討したグリーン水素に係る認証スキームを標準化を検討する 標準化の方向性 検討している標準 標準の概要 指摘されたメリット デメリット 規格の新規発行 CEN ( 欧州標準化委員会 ) 欧州を中心とした 34 か国のメンバーで構成される組織であり 欧州連合 (EU) と欧州自由貿易協会 (EFTA) により分野 (CENELEC) と通信分野 (ETST) 以外の分野における公式な標準化を保証する組織 水素の特性を規定できる 規格の発行まで 2~3 年要するため 迅速な対応が困難 既存規格への対応 EN 16325 ( エネルギーに係る発生源証明 (GO)- ) I-REC の発生源証明 (GO) に係る規格 Go の登録 発行 移転 取消に係る要件を規定 また GO のモニタリング方法や監査手順について規定している 再生可能エネルギー由来のの発生源証明 (GO) に係る国際的な規格 欧米では 民間企業や消費者に自発的に使用され ブラジル ロシア イスラエル等でも一部利用が検討 日本では 本規定を利用するか協業中 解釈や適応を整理すれば 迅速な対応が可能 水素の特性を規定できるかの検討が必要 解釈や適応を整理すれば 迅速な対応が可能 水素の特性を規定できるかの検討が必要 出所 : CertifHy の Stakeholder Meeting より作成 5

< 参考 : 再生可能エネルギー由来水素の製造に関する実証事業 (1/7)> 欧州では再生可能エネルギー由来水素の製造に関する実証事業に取り組んでおり 実施中の実証事業は 5 つ存在する FCH JU(Power to Gas) の主要プロジェクト ( 参考 )FCH JU の水電解プロジェクトへの投資額 2015 年 ~2020 年 2012 年 ~2017 年 2016 年 ~2019 年 アルカリ水電解 12% その他 7% 69 百万 EURO (8,161 百万円 ) 51% PEM 水電解 2017 年 ~2021 年 SOEC 水電解 29% 2017 年 ~2021 年 6

< 参考 : 再生可能エネルギー由来水素の製造に関する実証事業 (2/7)> FCH JU の Power to Gas の実証事業では 変動型再生可能エネルギーの余剰電力活用による系統安定化とグリーン電力活用による低炭素化を目的としている FCH JU サマリーページ 目的水素製造源水電解装置水素利用 1 Don Quichott 余剰電力の水素製造 貯蔵による系統の安定化 風力発電 太陽光発電 PEM 水電解 アルカリ水電解 燃料電池 FC フォークリフト 2 HyBalance 安価電力を活用した水素製造 貯蔵による系統安定化 風力発電 PEM 水電解 燃料電池 FCV/FC バス /FC トラック 3 4 GrInHy 可逆可能な SOEC/FC の実証及び効率の向上 水電解装置の大規模化等による設備コスト削減 再生可能エネルギー SOEC 水電解 製鉄製造 SOFC 燃料電池 H2Future 製鉄製造プロセスの低炭素化 再生可能エネルギー PEM 水電解 製鉄製造 5 Demo4grid 大規模水電解装置を活用した系統安定化 再生可能エネルギー アルカリ水電解 燃料電池 FCV/FC バス /FC トラック 7

1 < 参考 : 再生可能エネルギー由来水素の製造に関する実証事業 (3/7)> 再生可能エネルギーの余剰電力を活用し水素製造 貯蔵を行い系統安定化を目指す実証事業である Don Quichote 目的 再生可能エネルギーの余剰電力より水素製造 貯蔵を行い 系統安定化を行う 実証地 ベルギー ( ブリュセル ) ステークホルダー 期間 2012 年 ~2017 年 概要 予算 技術 概要 4.9 百万 EURO( 約 5.8 億円 ) 風力発電 :1.5MW/ 太陽光発電 :800kW PEM 水電解装置 :150kW/ アルカリ水電解の併用 :150kW 水素製造能力 :30Nm3/h 圧縮貯蔵タンク :450bar 130kg/ 日 Phase1 約 80kg/ 月 ( アルカリ水電解 :30Nm3/h) 稼働率 :4% 自営線を活用し余剰電力を水素製造 貯蔵 利用する ( オンサイト ) グリーン認証 (GO) を活用している 製造貯蔵 供給利用 電力系統 サプライチェーン イメージ図 風力 H2 燃料電池 8 太陽光 水電解装置水素貯蔵 FC フォークリフト

2 < 参考 : 再生可能エネルギー由来水素の製造に関する実証事業 (4/7)> 風力発電の安価電力を活用し水素製造 貯蔵を行い系統安定化を目指す実証事業である HyBalance 目的 風力発電の安価電力を活用し水素製造 貯蔵を行い 系統安定化を行う 実証地 期間 デンマーク 2015 年 ~2020 年 ステークホルダー 予算 15.2 百万 EURO( 約 18 億円 ) 概要 技術 概要 PEM 水電解装置 :1MW 水素製造能力 : 230Nm3/h 水素供給量 :500kg/ 日 1000 台のFCV 相当の水素供給を行う 再エネ電力の価格推移をモニタリングし 安価電力を自己託送し水素製造 貯蔵 利用する 製造貯蔵 供給利用 サプライチェーン イメージ図 電力系統 H2 水素発電 風力 水電解装置 水素 貯蔵 FCV/FCBus/FCTruck 9

3 < 参考 : 再生可能エネルギー由来水素の製造に関する実証事業 (5/7)> グリーン水素を活用し 製鉄製造プロセスの低炭素化及び系統安定化を目指す実証事業である GrInHy 目的 可逆可能な SOEC/FC の実証及び効率の向上 水電解装置の大規模化等による設備コスト削減 実証地 ドイツ ( ザルツギッター ) ステークホルダー 期間 2016 年 ~2019 年 予算 4.5 百万 EURO( 約 5.3 億円 ) 概要 技術概要 SOEC 水電解装置 :150kW 水素製造効率 : 40Nm3/h SOFC 燃料電池 :25kW( 天然ガス / メタン改質由来 ) 35kW( 純水素 ) 発電効率 :55% ( 天然ガス / メタン改質由来 ) 53% ( 純水素 ) 水素供給量 :4 百万 Nm3 系統電力を活用し水素製造 供給を行っている 稼働目標時間 : 7,000 h ( 約 80%) グリーン電力 : 6.88 セント /kwh 製造 供給 利用 サプライチェーンイメージ図 天然ガス 電力系統 水電解 (SOEC) 燃料電池 (SOFC) H2 製鉄製造 電力系統 10

4 < 参考 : 再生可能エネルギー由来水素の製造に関する実証事業 (6/7)> グリーン水素を活用し 製鉄製造プロセスの低炭素化を目指す実証事業である H2Future 目的 製鉄製造プロセスにおいて グリーン水素の活用により二酸化炭素排出量の削減 世界の二酸化排出量の内 製鉄産業による二酸化炭素排出量割合は 7% 実証地 オーストリア ( リンツ ) ステークホルダー 概要概要 期間予算技術概要 2017 年 ~2021 年 17 百万 EURO( 約 20 億円 ) PEM 水電解装置 :6MW(1.25MW 4) 水素製造能力 :225Nm3/h SILYZER 200(SIEMENS) 耐久性 :80,000 時間 系統電力を活用し水素製造を行う 電力由来の識別は 電力証書 (GO) に基づき実施する予定である 製造 供給 利用 サプライチェーンイメージ図 電力系統 H2 再エネ発電 水電解装置 水素 製鉄製造 11

5 < 参考 : 再生可能エネルギー由来水素の製造に関する実証事業 (7/7)> 大規模水電解装置を活用し 再生可能エネルギーによるグリーン水素製造及び系統安定化を目指す実証事業である Demo4grid 目的 大規模水電解装置 ( アルカリ水電解 ) を活用した系統安定化 実証地 期間 オーストリア 2017 年 ~2021 年 ステークホルダー 概要概要 予算 技術 概要 7.7 百万 EURO( 約 9.1 億円 ) アルカリ水電解装置 :4MW エネルギー変換効率 :52kWh/kg-H2 設備コスト :630EUEO/kW 圧縮貯蔵タンク :33bar 水素供給量 :1600-1800kg-H2/ 日 系統電力の余剰電力を活用し水素製造を行う 製造 貯蔵 供給 利用 サプライチェーンイメージ図 電力系統 H2 水素発電 水電解装置 水素 貯蔵 FCV/FCBus/FCTruck 12