( )

Similar documents

EGunGPU

SFN

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

sec13.dvi

Note.tex 2008/09/19( )

pdf

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

tnbp59-21_Web:P2/ky132379509610002944

PowerPoint Presentation

パーキンソン病治療ガイドライン2002

研修コーナー

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

本文/目次(裏白)

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

Contents 1 Jeans (

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

2000年度『数学展望 I』講義録

all.dvi

爆発的星形成? AGN関係を 生み出す物理機構の観測的示唆



untitled

TOP URL 1

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

2011de.dvi

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1


1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

GPGPU

Gmech08.dvi

スライド 1

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

³ÎΨÏÀ

inflation.key

nsg02-13/ky045059301600033210



JFE.dvi

DVIOUT

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 *

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

BH BH BH BH Typeset by FoilTEX 2

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

all.dvi

28 Horizontal angle correction using straight line detection in an equirectangular image

数値計算:有限要素法

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

H.Haken Synergetics 2nd (1978)

LLG-R8.Nisus.pdf

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

Transcription:

1. 2. 3. 4. 5. ( )

() http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) SDSS : d 2 r i dt 2 = Gm jr ij j i rij 3

= Newton 3 0.1% 19

20 20 2 ( ) 3 3 (2 )

3 3 3 2,3 Sun L4 L5 Jupiter Figure-8 solution 10 Figure-8 Solution 3 (0.005% )

d 2 x = f(x) (1) dt2 x(0) = x 0, dx dt t=0 = v(0) = v 0 (2) 1 dx/dt = f(x) x(t +Δt) =x(t)+δtf(x(t)) 1 1987 2

e 2 8.5 45 2 Nature : Laskar and Gastineau 2009 ( 0.38mm)

1 2

= 2 1920 1930 10 1/10

ρ R d 2 R dt = 4 2 3 πgρr3 /R 2 = 4 πgρr (3) 3 d 2 r dt 2 = 4 3 πgm/r2 (4) M ρr 3 a(t) ρ(t) =ρ 0 /a 3, r = r 0 a (5) 2 a d 2 a dt 2 = 4 3 πρ 0/a 2 (6) 3 2 a 0 t

( ) )

? X X 2 Hot dark matter Cold dark matter

1

Ill-posed problem?? 2+ 3 2 +

f(x, v) :6 f(x, v)dxdv dxdv f t + v f Φ f v =0, (7) Φ 2 φ = 4πGρ. (8) G ρ ρ = m dvf, (9)

. 1996

10 10 10 4 6 +10 7 M82 X NASA Chandra X

2 2 D = 709 2 D

f t = A(f(x)) (10) ( A f 2) (1) df df f 0 (x) A(f 0 (x)) = 0 f = f 0 + df df (2) : df f 0 df : df t = B(df (x)) (11) B(αdf 1 (x)+βdf 2 (x)) = αb(df 1 (x))+βb(df 2 (x)) (12) (3) df 1 df 1 df 1, df 2 df 1 + df 2

λ λdf = B(df ) (13) df = e λt df 0 λ f 0 f 0 df df

, D =1.05 (2), D =10 λ: (3), D = 100, D = 709

, D = 1000 gravothermal instavility V. Antnov (1961) : Hachisu & Sugimoto (1978) Hachisu et al. (1978) : Cohn (1980):

3 (Nature Vol 428 No 6984 724-726, Formation of massive black holes through runaway collisions in dense young star clusters ) 1. : 2. M82 IMBH 3. : Classic View (Rees 1984) 2...

() ( ) 3 merger : ( ) M82 BH Matsumoto et al. ApJL 547, L25 BH 10M BH > 10 6 M

M82 IMBH ( ) () >> 10, << 10 6 BH M82 (K band) 700M = IMBH (intermediate-mass BH). M82 200 : BH (2) HST NICMOS/Keck NIRSPEC McCrady et al. (astro-ph/0306373) IMBH ( ) IMBH IMBH How IMBHs were formed? ()

McCrady et al. 2003 (astro-ph/0306373) Cluster #11 (MGG-11) σ r =11.4 ± 0.8km/s half-light radius 1.2 ± 0.17pc 1. 2. IMBH ( ) 3. IMBH ( ) kinetic mass 3.5 ± 0.7 10 5 M Age 10Myrs. M/L ( ) (< 10 Myrs) King model with W 0 = 7-12 Salpeter IMF (as suggested by McCrady et al) Star-by-star simulation for MGG-11 (MGG-9 is scaled) W 0 8 (MGG-11 ) MGG-9 ( )

( ) BH 100 1000 M ( ) IMBH IMBH IMBH / M82 IMBH ( ) (BH2003 talk) 2MASS Chandra M82-X1 MGG11 0.6 Radiation recoil

IMBH SMBH Merger 1. 2. SMBH Growth timescale would be too large 3. SMBH IMBH? ( ) Ebisuzaki et al. 2001 ApJ 562, 19L 1) 2).... 3) 4).... 1. 2. IMBH 3. IMBH 4. IMBH IMBH Katz and Gunn 1992 : + + 1 Cray YMP 1000 1 : 1000

Saitoh et al. 2005 animation + + 200GRAPE-5 1 (!) 1 : 1 : 1 : 4-5 : 1000 8 1-2

Saitoh et al. 2007 Star formation with SPH Large scale structure formation with AMR 15 15 animation (Baba et al 2009) 1 2 SPH Cray XT4 ASURA 10pc ( 500pc) 10K ( 10 4 K) 3000M ( 10 5 M )

2006: Xu et al, Science 311, 54 Nov 2008: Burst of results from VLBA Several data from VERA (Compiled by Dr. Asaki)

( 30km/s)

( ) ( ) + (Fujii et al. 2010) animation a1 animation a2 animation b1 Stable against radial mode (a1, a2) Spiral arms form They seem to be maintained for very long time

2 30 20 1000 10

148Gflops 952 10 1 40 Gflops 10 (GRAVITY PIPE, GRAPE) GRAPE Host Computer Time integration etc. GRAPE Interaction calculation : :

GRAPE 1988 GRAPE-4 1995 GRAPE-6 2002

GRAPE GRAPE = GRAPE: 1/100 GRAPE-6 ( ()) 1990 1μm 1500 1997 0.25μm 1 2004 90nm 3 2010 45nm 10 GRAPE-DR :

GRAPE-DR R i = j f(x i,y j ) (M) 2 y j PEID BBID A x + ALU B T 32W 256W 256 (K M ) 512 1 200-250W 400-433MHz 820-887 Gflops PCIe 20

GRAPE-DR GRAPE-DR : 128-, 128- (105Tflops peak) : Intel Core i7+x58 12-24 GB : x4 DDR LU ( 1A: CPU 2 ) 430Gflops(1 ) 670Gflops(2 ) 1 CPU 11 GDR 4 chips GDR 1 chips GRAPE-6 HD5870 Performance for small N much better than GPU (for treecode, the multiwalk method greatly improves GPU performance, though)

Little Green 500, June 2010 (nm) (GF/W) GRAPE-DR 90 4.1 GRAPE-6 250 3.24 Tesla C2050 40 2 Xeon 5680 32 0.6 45 2 #2: IBM PowerXCell, #9: NVIDIA Fermi GRAPE-DR 10 GRAPE-6 GRAPE-6 10 : 30 GRAPE-DR FPGA ASIC

2 : 100 30% 300 1100 A4 1 1000 1. 2. 3. 4. Green 500 12/24