( )

Similar documents

A 99% MS-Free Presentation

4 19

EGunGPU


Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems

SFN

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

sec13.dvi

HPC / (CfCA) HPC 2007/11/23-25

IPSJ SIG Technical Report Vol.2014-ARC-213 No.24 Vol.2014-HPC-147 No /12/10 GPU 1,a) 1,b) 1,c) 1,d) GPU GPU Structure Of Array Array Of

Note.tex 2008/09/19( )

arxiv: v1(astro-ph.co)

pdf

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

第10章 アイソパラメトリック要素

tnbp59-21_Web:P2/ky132379509610002944

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

PowerPoint Presentation

パーキンソン病治療ガイドライン2002

研修コーナー

gr09.dvi

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

太陽系外惑星探査

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

本文/目次(裏白)

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

A

supercomputer2010.ppt

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

MW鹿児島

Contents 1 Jeans (

ohpr.dvi

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

2000年度『数学展望 I』講義録

all.dvi

爆発的星形成? AGN関係を 生み出す物理機構の観測的示唆



untitled

TOP URL 1

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

2011de.dvi

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1


1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

GPGPU

Gmech08.dvi

総研大恒星進化概要.dvi

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

スライド 1

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

GRAPE GRAPE-DR V-GRAPE

³ÎΨÏÀ

inflation.key

nsg02-13/ky045059301600033210



JFE.dvi

DVIOUT

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 *

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

chap1_MDpotentials.ppt

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

BH BH BH BH Typeset by FoilTEX 2

GRAPE GRAPE-DR V-GRAPE

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

all.dvi

28 Horizontal angle correction using straight line detection in an equirectangular image

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

数値計算:有限要素法

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

201711grade1ouyou.pdf

ohpmain.dvi

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

H.Haken Synergetics 2nd (1978)

it-ken_open.key

LLG-R8.Nisus.pdf

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

GJG160842_O.QXD

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

Transcription:

1. 2. 3. 4. 5. ( )

() http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) SDSS : d 2 r i dt 2 = Gm jr ij j i rij 3

= Newton 3 0.1% 19

20 20 2 ( ) 3 3 (2 )

3 3 3 2,3 Sun L4 L5 Jupiter Figure-8 solution 10 Figure-8 Solution 3 (0.005% )

d 2 x = f(x) (1) dt2 x(0) = x 0, dx dt t=0 = v(0) = v 0 (2) 1 dx/dt = f(x) x(t +Δt) =x(t)+δtf(x(t)) 1 1987 2

e 2 8.5 45 2 Nature : Laskar and Gastineau 2009 ( 0.38mm)

1 2

= 2 1920 1930 10 1/10

ρ R d 2 R dt = 4 2 3 πgρr3 /R 2 = 4 πgρr (3) 3 d 2 r dt 2 = 4 3 πgm/r2 (4) M ρr 3 a(t) ρ(t) =ρ 0 /a 3, r = r 0 a (5) 2 a d 2 a dt 2 = 4 3 πρ 0/a 2 (6) 3 2 a 0 t

( ) )

? X X 2 Hot dark matter Cold dark matter

1

Ill-posed problem?? 2+ 3 2 +

f(x, v) :6 f(x, v)dxdv dxdv f t + v f Φ f v =0, (7) Φ 2 φ = 4πGρ. (8) G ρ ρ = m dvf, (9)

. 1996

10 10 10 4 6 +10 7 M82 X NASA Chandra X

2 2 D = 709 2 D

f t = A(f(x)) (10) ( A f 2) (1) df df f 0 (x) A(f 0 (x)) = 0 f = f 0 + df df (2) : df f 0 df : df t = B(df (x)) (11) B(αdf 1 (x)+βdf 2 (x)) = αb(df 1 (x))+βb(df 2 (x)) (12) (3) df 1 df 1 df 1, df 2 df 1 + df 2

λ λdf = B(df ) (13) df = e λt df 0 λ f 0 f 0 df df

, D =1.05 (2), D =10 λ: (3), D = 100, D = 709

, D = 1000 gravothermal instavility V. Antnov (1961) : Hachisu & Sugimoto (1978) Hachisu et al. (1978) : Cohn (1980):

3 (Nature Vol 428 No 6984 724-726, Formation of massive black holes through runaway collisions in dense young star clusters ) 1. : 2. M82 IMBH 3. : Classic View (Rees 1984) 2...

() ( ) 3 merger : ( ) M82 BH Matsumoto et al. ApJL 547, L25 BH 10M BH > 10 6 M

M82 IMBH ( ) () >> 10, << 10 6 BH M82 (K band) 700M = IMBH (intermediate-mass BH). M82 200 : BH (2) HST NICMOS/Keck NIRSPEC McCrady et al. (astro-ph/0306373) IMBH ( ) IMBH IMBH How IMBHs were formed? ()

McCrady et al. 2003 (astro-ph/0306373) Cluster #11 (MGG-11) σ r =11.4 ± 0.8km/s half-light radius 1.2 ± 0.17pc 1. 2. IMBH ( ) 3. IMBH ( ) kinetic mass 3.5 ± 0.7 10 5 M Age 10Myrs. M/L ( ) (< 10 Myrs) King model with W 0 = 7-12 Salpeter IMF (as suggested by McCrady et al) Star-by-star simulation for MGG-11 (MGG-9 is scaled) W 0 8 (MGG-11 ) MGG-9 ( )

( ) BH 100 1000 M ( ) IMBH IMBH IMBH / M82 IMBH ( ) (BH2003 talk) 2MASS Chandra M82-X1 MGG11 0.6 Radiation recoil

IMBH SMBH Merger 1. 2. SMBH Growth timescale would be too large 3. SMBH IMBH? ( ) Ebisuzaki et al. 2001 ApJ 562, 19L 1) 2).... 3) 4).... 1. 2. IMBH 3. IMBH 4. IMBH IMBH Katz and Gunn 1992 : + + 1 Cray YMP 1000 1 : 1000

Saitoh et al. 2005 animation + + 200GRAPE-5 1 (!) 1 : 1 : 1 : 4-5 : 1000 8 1-2

Saitoh et al. 2007 Star formation with SPH Large scale structure formation with AMR 15 15 animation (Baba et al 2009) 1 2 SPH Cray XT4 ASURA 10pc ( 500pc) 10K ( 10 4 K) 3000M ( 10 5 M )

2006: Xu et al, Science 311, 54 Nov 2008: Burst of results from VLBA Several data from VERA (Compiled by Dr. Asaki)

( 30km/s)

( ) ( ) + (Fujii et al. 2010) animation a1 animation a2 animation b1 Stable against radial mode (a1, a2) Spiral arms form They seem to be maintained for very long time

2 30 20 1000 10

148Gflops 952 10 1 40 Gflops 10 (GRAVITY PIPE, GRAPE) GRAPE Host Computer Time integration etc. GRAPE Interaction calculation : :

GRAPE 1988 GRAPE-4 1995 GRAPE-6 2002

GRAPE GRAPE = GRAPE: 1/100 GRAPE-6 ( ()) 1990 1μm 1500 1997 0.25μm 1 2004 90nm 3 2010 45nm 10 GRAPE-DR :

GRAPE-DR R i = j f(x i,y j ) (M) 2 y j PEID BBID A x + ALU B T 32W 256W 256 (K M ) 512 1 200-250W 400-433MHz 820-887 Gflops PCIe 20

GRAPE-DR GRAPE-DR : 128-, 128- (105Tflops peak) : Intel Core i7+x58 12-24 GB : x4 DDR LU ( 1A: CPU 2 ) 430Gflops(1 ) 670Gflops(2 ) 1 CPU 11 GDR 4 chips GDR 1 chips GRAPE-6 HD5870 Performance for small N much better than GPU (for treecode, the multiwalk method greatly improves GPU performance, though)

Little Green 500, June 2010 (nm) (GF/W) GRAPE-DR 90 4.1 GRAPE-6 250 3.24 Tesla C2050 40 2 Xeon 5680 32 0.6 45 2 #2: IBM PowerXCell, #9: NVIDIA Fermi GRAPE-DR 10 GRAPE-6 GRAPE-6 10 : 30 GRAPE-DR FPGA ASIC

2 : 100 30% 300 1100 A4 1 1000 1. 2. 3. 4. Green 500 12/24