6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

Similar documents
3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

現代物理化学 2-1(9)16.ppt

i

i 18 2H 2 + O 2 2H 2 + ( ) 3K

untitled

2009 June 8 toki/thermodynamics.pdf ) 1

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1


0 (Preliminary) T S pv

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

30

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

現代物理化学 1-1(4)16.ppt

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

C:/KENAR/0p1.dvi

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

all.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

0 (Preliminary) F G T S pv (1)

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

1

ρ(= kg m 3 ), g h P 0 C () [1] 1.3 SI Pa hpa h 100 ( : 100 ) 1m 2 1N 1Pa 1N 1kg 1m s 2 Pa hpa mb hpa 1mm 1mmHg hpa 1mmHg =

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

I ( ) 2019

flMŠÍ−w−î‚b

2011de.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

mugensho.dvi

Untitled

ii

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

gr09.dvi

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1


P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

スライド 1


24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

i

kou05.dvi

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

b3e2003.dvi

difgeo1.dvi

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Maxwell

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

1 c Koichi Suga, ISBN

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 )

応用数学III-4.ppt

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F


n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

TCSE4~5

2 p T, Q

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq


II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1


- 2 -


1 (1) (2)

−g”U›ß™ö‡Æ…X…y…N…g…‰

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

応力とひずみ.ppt

空き容量一覧表(154kV以上)

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

入試の軌跡

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

Note.tex 2008/09/19( )

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

P P P P P P P P P P P P P

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

Transcription:

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1

(e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5) ( ) U + W = Q (e) S (6.6) 6-2

6.2.1 ( ) Q = 0 0 S 1 S =maximum 6.2.2 (V, ) = : Helmholtz W = 0 = 0 = (e) ( ) Q = U S = ( S) (6.7) (U S) 0 (6.8) Helmholtz F (V, ) F (V, ) U S = Helmholtz free energy (6.9) : F 0 : F =minimum F (V, ) F 1 homson Boltzmann H 6-3

2 df = du d( S) = ( ds P dv ) d S ds }{{} du = Sd P dv (6.10) ( ) F P = V ( ) F, S = V (6.11) F = dv (x)/dx Helmholtz Helmholtz V W W + (U S) = W + F 0 W F (6.12) X X 0 F = F [X 0 ] F [X] W F [X] F [X 0 ] F [X 0 ] F ( F F ) 6.1 U F U = 2 ( ) F V (6.13) 2 F (V, ) V, F = U S V, F 6-4

S = ( F/ ) V ( ) F U = F + S = F = 2 V ( ) F V (6.14) 6.2.3 (P, ) = : Gibbs P ( ) Q = U + P V = (U + P V ) S = ( S) (6.15) Gibbs G(P, ) G(P, ) U + P V S = F + P V = Gibbs free energy (6.16) : G 0 : G =minimum G (P, ) G dg = df + d(p V ) = Sd P dv + P dv + V dp = Sd + V dp (6.17) ( ) ( ) G G = S, = V (6.18) P P G 6-5

m h P = mg/a A G = F + P V = Helmholtz + 6.2 1 P 1 P 2 ( P 1 < P 2 ) Helmholotz Gibbs P V = R (P V ) = 0 F, G F = G = U S (6.19) U = C V + U 0 (6.20) S = C V ln + R ln V + S 0 = C V ln R ln P + ln R + S 0 (6.21) U F = G = S = R ln P = R (ln P 2 ln P 1 ) = R ln P 2 P 1 (6.22) 6.2.4 (S, V ) = : S = 0, W = 0 ( ) U 0 U S V U = U(S, V ) U =minimum 6-6

S, V U ( U ) S V du = ds P dv (6.23) =, ( ) U = P (6.24) V S 6.2.5 (S, P ) = : S = 0 U + P V 0 (6.25) P = P V = (P V ) (U + P V ) 0 (enthalpy) 3 H(S, P ) H(S, P ) U + P V = Enthalpy (6.26) : H 0 : H = minimum H dh = d(u + P V ) = du + V dp + P dv = ( ds P dv ) + V dp + P dv = ds + V dp dh = ds + V dp (6.27) 3 en+thalpy(= ) 6-7

( ) ( ) H H =, = V (6.28) S P P S : 1. P = dh = du + P dv = d Q H d 0 Q C P H H (, P ) ( ) H d Q = dh = d + P ( ) ( ) Q H C P = = P P ( ) H dp P (6.29) 2. F = P A h F = mg A = mgh = F h P V = P Ah = F h P V H = U + P V = + (6.30) 6-8

6.3 ( ) ( ) H V = + V (6.31) P P P U = H P V ) ds = du + P dv = dh V dp (6.32) (P, ) ds = 1 ( ) H d + 1 (( ) H P P V ds ( ( ) ) 1 H = ( (( ) )) 1 H V P P 0 = 1 (( ) H 2 P P ) V 1 ( ) V P // ) dp (6.33) (6.34) (6.35) 6.3 : [1] f {X, Y } df (V, ) = Sd P dv (6.36) dg(p, ) = Sd + V dp (6.37) du(s, V ) = ds P dv (6.38) dh(s, P ) = ds + V dp (6.39) 6-9

[2] f f(x, Y ) : U (S, V ) (, V ) (i) U = U(S, V ) : du = ds P dv ( ) U = (S, V ), S V ( ) U = P (S, V ) (6.40) V S S, V P S, V S, P, V U = U(, V ) = (S, V ) S = S(V, ) U = U(S(V, ), V ) (ii) U = U(V, ) : ( ) ( ) U U du = d + dv (6.41) V V P (V, ) ( ) du = ds P dv S P (6.41) dv ( U/ V ) P P ( U/ V ) S (iii) U = U(V, ) P (V, )( ) : : S(V, ), V S ds = 1 (du + P dv ) = 1 [( ) (( ) ) ] U U d + + P dv (6.42) V V 6-10

( U ), ( ) U V V P (, V ) ( ) S(V, ) P (V, ) : d Q = du + P dv (e) ds (6.43) : : P, V, S, U ) ( ) U, S, P, V, 5 U, S, V, V, U S V, du( ) = C V d 6-11

: (Legendre) : U, F, G, H ( ) (X, x) (X, x) = (P, V ), (S, ) (6.44) ( ) A(x, y, z,...) x X B(X, y, z,...) Legendre A da(x, y, z,...) = Xdx + Y dy + Zdz + (6.45) A (x, X) Legendre B A Xx (6.46) db = da d(xx) = Xdx + Y dy + Zdz + (Xdx + xdx) = xdx + Y dy + Zdz + (6.47) B (X, y, z,...) Legendre : U Legendre du(s, V ) = ds P dv (6.48) (S, ) Legendre Helmholtz free energy F F = U S (6.49) df (, V ) = du d( S) = Sd P dv (6.50) ( P, V ) Legendre Gibbs free energy G G = F ( P )V = F + P V (6.51) dg(, P ) = df + d(p V ) = Sd + V dp (6.52) 6-12

U ( P, V ) Legendre H = U ( P )V = U + P V (6.53) dh(s, P ) = du + d(p V ) = ds + V dp (6.54) 6.4 P, V, P, V, = ds = P dv : (1) E chem = i µ i dn i, i = (6.55) µ i = N i = (2) E mag = H d M, E ele = E d P, M =, H = (6.56) P =, E = (6.57) (3) E general = Xdx, X =, dx = (6.58) : X = x = 6-13

6.4.1 f = k( )x, k( ) = k 0 + k 1 (6.59) x V ( ) f P ( ) fdx P dv (6.59) x C x (C 0 ) ( : U ) = ( ) P P V V ( ) ( ) U f = f = k 1 x + (k 0 + k 1 )x = k 0 x (6.60) x x ( ) U C 0 = (6.61) du = ( ) U d + x x ( ) U dx = C 0 d + k 0 xdx (6.62) x U(x, ) = 1 2 k 0x 2 + C 0 + const. (6.63) 6-14

= 0 C 0 : ds = du + fdx = C 0 d + k 0 xdx + ( k 0 x k 1 x)dx = C 0 d k 1 xdx ds = C 0 d k 1xdx (6.64) S = C 0 ln 1 2 k 1x 2 + const. (6.65) ( ) F : U, S x, Helmholtz F (x, ) F = U S = 1 ( 2 k 0x 2 + C 0 + const. C 0 ln 1 ) 2 k 1x 2 + const. F = 1 2 k( )x2 C 0 ln + C 0 + a + b (6.66) : F = U S f = F/ x ( ) ( ) U S f = + = k 0 x k 1 x (6.67) x x 6-15

6.4 0 x x V S (6.65) C 0 ln = 1k 2 1x 2 + const. = 0 exp ( ) k1 x 2 2C 0 0 : x = 0 (6.68) 6.4.2 H M χ = M/ H Curie χ = C, C = const > 0 M = CH (6.69) ( ) : dm HdM HdM M V ( ) H P ( ) HdM P dv Curie χ = M H V P = V (6.70) : 6-16

d Q = ds = du HdM (6.71) M = CH (6.72) P = f(v ) U = U( ) d Q = ds = C M ( )d HdM, C M ( ) ( ) U M (6.73) 6.5 : 0 H 0 d = 0 Curie d Q = HdM = C HdH (6.74) Q = C H0 0 HdH = C 2 H2 0 (6.75) Q(> 0) 6.6 H, HdM M H, M S H, ds = 1 (C M ( )d C ) MdM = C M ( ) d 1 C MdM CM ( ) S = d 1 2C M 2 + const. CM ( ) = d C ( ) 2 H + const. (6.76) 2 6-17

6.7 : 0 H 0 0 U = a 4 (a = const > 0) 4 C M ( ) = ( U/ ) M = 4a 3 S = 4a 2 d C ( ) 2 H + const. 2 = 4a 3 3 C ( ) 2 H + const. (6.77) 2 4a 3 3 0 C 2 ( H0 0 ) 2 = 4a 3 3 3 3 0 = 3C 8a ( H0 0 ) 2 (6.78) 4 6-18