( ) 5 Reduction ( ) A M n (C) Av = λv (v 0) (11.1) λ C A (eigenvalue) v C n A λ (eigenvector) M n (R) A λ(a) A M n (R) n A λ

Similar documents
プログラム

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

tnbp59-21_Web:P2/ky132379509610002944

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

Ł\”ƒ-2005

第86回日本感染症学会総会学術集会後抄録(I)

第90回日本感染症学会学術講演会抄録(I)

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

日本内科学会雑誌第102巻第4号

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

Erased_PDF.pdf


プログラム

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

I , : ~/math/functional-analysis/functional-analysis-1.tex

スライド タイトルなし

2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

untitled

橡固有値セミナー2_棚橋改.PDF

本文/目次(裏白)

Microsoft PowerPoint - Eigen.pptx

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

Microsoft PowerPoint - Eigen.ppt [互換モード]

抄録/抄録1    (1)V

numb.dvi

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1


A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

linearal1.dvi

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

研修コーナー

神奈川県歴史資料所在目録

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

パーキンソン病治療ガイドライン2002


December 28, 2018

日本内科学会雑誌第96巻第7号

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

1 I

資料5:聖ウルスラ学院英智小・中学校 提出資料(1)

. a, b, c, d b a ± d bc ± ad = c ac b a d c = bd ac b a d c = bc ad n m nm [2][3] BASIC [4] B BASIC [5] BASIC Intel x * IEEE a e d

03実習2・松井.pptx

January 27, 2015

NL09

zsj2017 (Toyama) program.pdf


_170825_<52D5><7269><5B66><4F1A>_<6821><4E86><5F8C><4FEE><6B63>_<518A><5B50><4F53><FF08><5168><9801><FF09>.pdf

snkp-14-2/ky347084220200019175

GJG160842_O.QXD

広報みはま.indd

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

生活設計レジメ


n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

日本医科大学医学会雑誌第7巻第2号

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

I II III 28 29

SC-85X2取説


nsg02-13/ky045059301600033210

<4D F736F F F696E74202D C835B B E B8CDD8AB B83685D>

P1.\..

10_11p01(Ł\”ƒ)

P1.\..

Q34Q35 2

レイアウト 1

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

多摩のかけはしNo98 表1表4色

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

ito.dvi

JSP58-program


ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

P1〜14/稲 〃

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

本文/扉1

プログラム


平成20年5月 協会創立50年の歩み 海の安全と環境保全を目指して 友國八郎 海上保安庁 長官 岩崎貞二 日本船主協会 会長 前川弘幸 JF全国漁業協同組合連合会 代表理事会長 服部郁弘 日本船長協会 会長 森本靖之 日本船舶機関士協会 会長 大内博文 航海訓練所 練習船船長 竹本孝弘 第二管区海上保安本部長 梅田宜弘

Program

aphp37-11_プロ1/ky869543540410005590


Œ{Ł¶/1ŒÊ −ªfiª„¾ [ 1…y†[…W ]

日本内科学会雑誌第96巻第11号

Krylov A04 October 8, 2010 T. Sakurai (Univ. Tsukuba) Krylov October 8, / 48

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

untitled

16 B

第10章 アイソパラメトリック要素

nsg04-28/ky208684356100043077

II

これわかWord2010_第1部_ indd

Transcription:

125 11 ( ) 5 Reduction 11.1 11.1.1 ( ) A M n (C) Av = λv (v 0) (11.1) λ C A (eigenvalue) v C n A λ (eigenvector) M n (R) A λ(a) 11.1.2 A M n (R) n A λi = 0 A C n 5

126 11 A n λ 1 (A) λ 2 (A) λ n (A) A M n (R) A T = A 11.1.3 A λ(a) (Jacobi ) 11.1.1 A, B M 2 (R) 1 2 A = 2 1, B = 1 2 3 4 11.2 11.2.1 ( ) P M n (R) A A λi = 0 P 1 AP λi = P 1 A λi P = 0 P 1 AP A P 1 v 5 ( ) ( Jacobi ) (QR Bisection ) Reduction(Householder, Lanczos ) A (A λi)v = 0 (11.2) λ v rank(a λi) < n 1 Leverrier-Faddeev ( 5) ( 13 )

11.3. 127 相似変換 行列の Reduction Householder 法, Lanczos 法 固有値のみを求める方法 固有多項式の解を求める方法 Bisection 法 ( 実対称行列用 ), Danilevski 法 相似変換を重ねることで対角もしくは ( 上 ) 三角行列に収束させる方法 Jacobi 法 ( 実対称行列用 ), QR 法,LR 法 固有値 固有ベクトルを同時に求める方法 Jacobi 法 ( 実対称行列用 ), べき乗法, 逆べき乗法 11.1: 11.3 λ 1 = λ 1 (A) v 1 (i < j λ i λ j, λ i > λ j ) λ i = λ i (A) v i n x 0 x k := A k x 0 x 0 = c 1 v 1 + c 2 v 2 + + c n v n ( ) k ( ) k x k = (λ 1 ) k c λ2 λn 1v 1 + c 2 v 2 + + c n v n λ 1 λ 1 ( ) k x k = (λ 1 ) k λ2 c 1 v 1 + O λ 1 v 1 λ 1 Reiley λ 1 (Ax k+1, x k ) (x k, x k ) overflow x k = 1

128 11 19 ( ) 1. x 0 ( x 0 = 1) 2. for k = 0, 1, 2,... (a) y k+1 := Ax k (b) γ k+1 := (y k+1, x k )/(x k, x k ) (c) (d) x k+1 := y k+1 / y k+1 γ k λ 1 (A) x k γ k x k 5 A A 1 A A LU 20 ( ) 1. x 0 ( x 0 = 1) 2. A LU L A U A = A 3. for k = 0, 1, 2,... (a) y k+1 := U 1 A L 1 A x k Ay k+1 = x k y k+1 (b) δ k+1 := (y k+1, x k )/(x k, x k ) (c) (d) x k+1 := y k+1 / y k+1 δ k λ n (A) x k A κ(a) 11.3.1

11.4. LR 129 11.3.1 ( ) A 5 4 3 2 1 4 4 3 2 1 A = 3 3 3 2 1 2 2 2 2 1 1 1 1 1 1 IEEE754 λ 1 (A) Maximum Eigenvalue: 1.23435375196795842e+01 x Ax x i eigenvector[i] A * eivenvector[i] / eigenvector[i] 0 2.23606797749978981e+00 1.23435375196795842e+01 1 2.05491504837138317e+00 1.23435375196779056e+01 2 1.70728512307438196e+00 1.23435375196750883e+01 3 1.22134111072129303e+00 1.23435375196720223e+01 4 6.36451305172487269e-01 1.23435375196696810e+01 Minimum Eigenvalue: 2.71554129623403084e-01 i eigenvector[i] A * eivenvector[i] / eigenvector[i] 0 1.16523414829594052e+00 2.71554128916587478e-01 1-3.12574884108380457e+00 2.71554129050644799e-01 2 4.09386037170360861e+00 2.71554129276193768e-01 3-3.76220016281536740e+00 2.71554129521628440e-01 4 2.23606797749979025e+00 2.71554129709021375e-01 11.3.1 19 20 A = A T (Hint: ) 11.4 LR LU 1 1 U(upper triangular matrix) R Wilkinson

130 11 21 (LR ) 1. A 0 := A 2. for k = 0, 1, 2,... (a) L k R k = A k LU (b) A k+1 := R k L k LU λ 1 A i λ 2... λ n A LR Iterative Times: 0 5.000e+00 4.000e+00 3.000e+00 2.000e+00 1.000e+00 4.000e+00 4.000e+00 3.000e+00 2.000e+00 1.000e+00 3.000e+00 3.000e+00 3.000e+00 2.000e+00 1.000e+00 2.000e+00 2.000e+00 2.000e+00 2.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 Iterative Times: 10 1.234e+01 1.788e+01 1.024e+01 3.536e+00 1.000e+00 2.780e-09 1.448e+00 8.299e-01 2.864e-01 8.101e-02 9.665e-13 5.034e-04 5.733e-01 1.979e-01 5.597e-02 1.933e-14 1.007e-05 1.147e-02 3.491e-01 9.874e-02 5.817e-16 3.030e-07 3.451e-04 1.050e-02 2.858e-01 Iterative Times: 20 1.234e+01 1.788e+01 1.042e+01 3.670e+00 1.000e+00 1.378e-18 1.449e+00 8.444e-01 2.973e-01 8.101e-02 5.200e-26 5.466e-08 5.829e-01 2.052e-01 5.592e-02 6.503e-30 6.835e-12 7.289e-05 3.521e-01 9.595e-02 1.835e-32 1.929e-14 2.057e-07 9.939e-04 2.727e-01 Iterative Times: 50 1.234e+01 1.788e+01 1.042e+01 3.683e+00 1.000e+00 1.681e-46 1.449e+00 8.445e-01 2.983e-01 8.101e-02

11.5. QR 131 8.751e-66 7.544e-20 5.830e-01 2.059e-01 5.592e-02 3.219e-76 2.775e-30 2.145e-11 3.533e-01 9.593e-02 3.488e-82 3.007e-36 2.324e-17 3.827e-07 2.716e-01 i eigenvalues 0 1.23435375196770583e+01 1 1.44869056979664057e+00 2 5.82964498282089627e-01 3 3.53252937435699021e-01 4 2.71554474808511137e-01 11.4.1 LR QR 11.5 QR A A = [a 1 a 2 a n ] n Gram-Schmidt a 1, a 2,..., a n q 1, q 2,..., q n 22 (Gram-Schmidt ) 1. for i = 1, 2,..., n (a) u i := a i i 1 j=1 (a i, q j )q j (b) q i := u i / u i 2 u 1 2 (a 2, q 1 ) (a 3, q 1 ) (a n, q 1 ) [a 1 a 2 a n ] = [q 1 q 2 q n ] u 2 2 (a 3, q 2 ) (a n, q 2 )....... u n 1 2 (a n, q n 1 ) u n 2 A = QR Q QQ T = I R A QR LR QR QR

132 11 23 (QR ) 1. A 0 := A 2. for k = 0, 1, 2,... (a) Q k R k = A k A k QR (b) A k+1 := R k Q k LR QR Iterative Times: 0 5.000e+00 4.000e+00 3.000e+00 2.000e+00 1.000e+00 4.000e+00 4.000e+00 3.000e+00 2.000e+00 1.000e+00 3.000e+00 3.000e+00 3.000e+00 2.000e+00 1.000e+00 2.000e+00 2.000e+00 2.000e+00 2.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 Iterative Times: 10 1.234e+01 4.965e-09 7.330e-13 6.536e-15 2.138e-14 4.965e-09 1.449e+00 2.148e-04 1.426e-06 3.953e-08 7.363e-13 2.148e-04 5.829e-01 3.868e-03 1.073e-04 4.885e-15 1.426e-06 3.868e-03 3.521e-01 9.765e-03 1.355e-16 3.953e-08 1.073e-04 9.765e-03 2.727e-01 Iterative Times: 20 1.234e+01-8.636e-16-3.198e-15 4.067e-15 2.092e-14 2.462e-18 1.449e+00 2.392e-08 1.061e-12 7.289e-15 4.065e-26 2.392e-08 5.830e-01 2.572e-05 5.197e-08 1.794e-30 1.055e-12 2.572e-05 3.532e-01 7.137e-04 3.624e-33 2.133e-15 5.197e-08 7.137e-04 2.716e-01 Iterative Times: 40 1.234e+01-8.661e-16-3.198e-15 4.249e-15 2.089e-14 6.053e-37 1.449e+00 1.125e-15 6.065e-15 5.103e-15 1.239e-52 2.965e-16 5.830e-01 1.146e-09 1.177e-14 2.436e-61 5.830e-25 1.146e-09 3.533e-01 3.707e-06 2.556e-66 6.117e-30 1.203e-14 3.707e-06 2.716e-01 Iterative Times: 50 1.234e+01-8.661e-16-3.198e-15 4.250e-15 2.089e-14 3.001e-46 1.449e+00 8.289e-16 6.065e-15 5.103e-15

11.6. Reduction 133 6.841e-66 3.302e-20 5.830e-01 7.651e-12-2.530e-16 8.976e-77 4.333e-31 7.650e-12 3.533e-01 2.671e-07 6.787e-83 3.276e-37 5.784e-18 2.671e-07 2.716e-01 i eigenvalues 0 1.23435375196770583e+01 1 1.44869056979664190e+00 2 5.82964498293740085e-01 3 3.53253282893222331e-01 4 2.71554129339337202e-01 LR QR Reduction 11.5.1 22 n, q 1, q 2,...,q n 11.6 Reduction 0 0 Reduction Householder 24 (Householder ) 1. A 0 := A 2. for i = 1, 2,..., n 1 (a) s 2 := n j=i+1 a 2 ji (b) s := sign(a i+1,i ) s 2 (c) c := 1/(s 2 + a i+1,i s) (d) w i := [0... 0 a i+1,i + s a i+2,i... a ni ] T (e) P i := I cw i w T i (f) q i := caw i c 2 w i(caw i ) T w i (g) A i+1 := P i A i P i = A i q i w T i w i q T i

134 11 A P = P 1 P 2 P n 1 α 1 P 1 AP = β 1 α 2...... (11.3) β n 1 α n Hessenberg A P 1 AP = α 1 β 1 β 1 α 2......... β n 1 β n 1 α n (11.4) 3 Householder P 1.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00-7.303e-01 6.293e-01-2.615e-01 4.828e-02 0.000e+00-5.477e-01-3.146e-01 7.191e-01-2.897e-01 0.000e+00-3.651e-01-5.843e-01-2.615e-01 6.759e-01 0.000e+00-1.826e-01-4.045e-01-5.883e-01-6.759e-01 3 P 1 AP 5.000e+00-5.477e+00 0.000e+00 0.000e+00 0.000e+00-5.477e+00 8.200e+00 8.124e-01 1.550e-16-2.487e-17 0.000e+00 8.124e-01 1.022e+00 1.910e-01 0.000e+00 0.000e+00 0.000e+00 1.910e-01 4.701e-01 5.681e-02 0.000e+00 0.000e+00 0.000e+00 5.681e-02 3.077e-01 2 Reduction Lanczos 25 ( Lanczos ) 1. x 1 2 = 1 x 1 2. for i = 1, 2,..., n (a) α i := (x i, Ax i ) (b) y i+1 := Ax i β i 1 x i 1 α i x i ( β 0 = 0) (c) β i := y i+1 2 2 3 Lanczos

11.6. Reduction 135 (d) x i+1 := (1/β i )y i+1 Lanczos x 1 = [1 0... 0] T P 1.000e+00 0.000e+00 0.000e+00 4.011e-14 8.489e-12 0.000e+00 7.303e-01-6.293e-01 2.615e-01-4.828e-02 0.000e+00 5.477e-01 3.146e-01-7.191e-01 2.897e-01 0.000e+00 3.651e-01 5.843e-01 2.615e-01-6.759e-01 0.000e+00 1.826e-01 4.045e-01 5.883e-01 6.759e-01 3 P 1 AP 5.000e+00 5.477e+00 0.000e+00 0.000e+00 0.000e+00 5.477e+00 8.200e+00 8.124e-01 0.000e+00 0.000e+00 0.000e+00 8.124e-01 1.022e+00 1.910e-01 0.000e+00 0.000e+00 0.000e+00 1.910e-01 4.701e-01 5.681e-02 0.000e+00 0.000e+00 0.000e+00 5.681e-02 3.077e-01 Householder Lanczos 3 1. A M 3 (R) A = 2 1 0 1 2 1 0 1 2 (a) A λ 1 v 1 λ 1 10 2 (b) A LU (c) A λ 3 v 3 λ 3 10 2 2. 1 2 A 1 = 2 3, A 2 = 1 2 0 3, A 1 0 3 = 2 3

136 11 3. A A Jordan 2 Jordan 3 4. (11.4) 3 H (a) H λi = 0 p 0 (λ) = 1, p 1 (λ) := α 1 λ p i (λ) := (α i λ)p i 1 (λ) β 2 i 1 p i 2(λ) p n (λ) = H λi (b) Hessenberg 5. A = [a i j ] M n (R) monic q n (x) = x n + n 1 i=0 c ix i c n, c n 1,..., c 0 Leverrier-Faddeev [21, 10] trace(a) = n i=1 a ii N 1 := I c n 1 := trace(an 1 ) N 2 := AN 1 + c n 1 I c n 2 := 1 2 trace(an 2) N 3 := AN 2 + c n 2 I c n 3 := 1 3 trace(an 3). c 1 := 1 n 1 trace(an n 1) N n := AN n 1 + c 1 I c 0 := 1 n trace(an n) 3 2 Jordan