08-Note2-web

Similar documents
数学演習:微分方程式

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

Gmech08.dvi

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

chap1.dvi


x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

振動と波動

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

DE-resume

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

I 1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

K E N Z OU


dynamics-solution2.dvi

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

pdf

( ) ( )

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x


A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

KENZOU

Fr

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (


B ver B

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

mugensho.dvi

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

DVIOUT



1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

December 28, 2018

2011de.dvi

I ( ) 2019

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s



II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

v er.1/ c /(21)

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Gmech08.dvi


Chap11.dvi

ohp_06nov_tohoku.dvi

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

重力方向に基づくコントローラの向き決定方法

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

曲面のパラメタ表示と接線ベクトル

29


( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2



O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

sec13.dvi

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

Z: Q: R: C: sin 6 5 ζ a, b


x ( ) x dx = ax

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

Note.tex 2008/09/19( )


simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

i

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

meiji_resume_1.PDF

85 4

II 1 II 2012 II Gauss-Bonnet II

構造と連続体の力学基礎

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t


1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

Transcription:

r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2

r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t) dt 2 = (ẋ(t), ẏ(t), ż(t)) ) = (ẍ(t), ÿ(t), z(t)) d dt r(t) 2 =2r(t) v(t) r(t) 2 = x(t) 2 + y(t) 2 + z(t) 2 d dt r(t) 2 = 2(x(t)ẋ(t)+y(t)ẏ(t)+z(t)ż(t)) =2r(t) v(t)

t = 0 (1, 0, 0) t = 1 ( 1, 1, 1) t = 1 ( 1, 1, 1) r(t) = (1 t)(1, 0, 0) + t( 1, 1, 1) = (1 2t, t, t) t = 0 (1, 0, 0) r(t) O v(t) =( 2, 1, 1) a(t) = (0, 0, 0)

t =0 (1, 0) ω v(t) a(t) O r(t) r(t) = (cos ωt, sin ωt) v(t) =( ω sin ωt, ω cos ωt) = ωr π/2 r(t) R θ = [ cos θ sin θ sin θ cos θ a(t) =( ω 2 cos ωt, ω 2 sin ωt) = ω 2 r(t) v(t) = ω a(t) = ω 2 ] θ

ma = f Isaac NEWTON (1642-1727) m dv dt = f m d2 r dt 2 = f

y v 0 mg 0 x v 0 =(u 0,v 0 ) m d2 r dt 2 = f f = (0, mg) r(0) = 0 g dr dt (0) = v 0 { mẍ = 0 mÿ = mg { ẋ = u0 ẏ = v 0 gt x(0) = 0, ẋ(0) = u 0 y(0) = 0, ẏ(0) = v 0 x(t) = u 0 t y(t) = v 0 t g 2 t 2

x kv mg t = 0 v g v(t)

m dv dt = mg kv dy dx P(x) y = 0 log y = dy y = P(x) y = ce P(x)dx P(x)dx () dy dx αy = 0 y = ce αdx + c = ce αx

dy dx m dv dt P(x) y = Q(x) y = c(x)e = mg kv ( ) P(x )dx if Q(x) = 0 y = ce P(x)dx c(x) = e P(x )dx Q(x)dx + c y = e P(x )dx ( P(x )dx e Q(x)dx + c) dy dx αy = β y = β α + ce αx c:

x kv mg v = mg k t = 0 v (1 e k m t) m dv dt mg k v g = mg kv v = gt v(t) v(0) = 0 v = mg k t

v ( ) v --- dv/dt

du dt = ru(1 u/k) du/dt 0 < u < K u u > K u 0 K u dv dt = g k m v v < mg/k v > mg/k v v dv du/dt 0 mg/k uv

v v v(0) > mg/k mg k mg k v(0) = 0 t t dv dt = g k m v v < mg/k v > mg/k v v dv du/dt 0 mg/k uv

0 x(t) x x(t)

kx m m k x(t) d 2 x dt 2 + ω2 0x = 0 m d2 x dt 2 = kx ω 0 = k/m

d 2 x dt 2 + ω2 0x = 0 (1) x = cos ω 0 t x = sin ω 0 t A cos ω 0 t + B sin ω 0 t = 0 A = B = 0 x 2 (t) x 1 (t) x(t) = c 1 x 1 (t) + c 2 x 2 (t)

K k=0 a k (t) dk u dt k = f(t) f(t) =0 d 2 x dt 2 + ω2 0x = 0

d 2 x dt 2 + ω2 0x = 0 (1) A cos ω 0 t + B sin ω 0 t = 0 A = B = 0 t = 0 A = 0 t = π/(2ω 0 ) B = 0

d 2 x dt 2 + ω2 0x = 0 (1) x 2 (t) x 1 (t) x(t) = c 1 x 1 (t) + c 2 x 2 (t) d 2 x dt 2 + ω2 0x = d2 dt 2 (c 1x 1 + c 2 x 2 ) + ω0(c 2 1 x 1 + c 2 x 2 ) = c 1 ( d 2 x 1 dt 2 + ω2 0x 1 ) + c 2 ( d 2 x 2 dt 2 + ω2 0x 2 ) = 0

d 2 x dt 2 + ω2 0x = 0 (1) A, B x = A cos ω 0 t + B sin ω 0 t dx dt (0) = 0 x(0) = 1, dx dt (0) = 1 = C sin (ω 0 t + φ) x(0) = 0, dx x(0) = a, dt (0) = b

d 2 x dt 2 + ω2 0x = 0 (1) A, B x = A cos ω 0 t + B sin ω 0 t dx dt (0) = 0 = C sin (ω 0 t + φ) x(0) = 1, x = cos ω 0 t

d 2 x dt 2 + ω2 0x = 0 (1) A, B x = A cos ω 0 t + B sin ω 0 t = C sin (ω 0 t + φ) dx dt (0) = 1 x(0) = 0, x(t) = 1 ω 0 sin ω 0 t

d 2 x dt 2 + ω2 0x = 0 (1) A, B x = A cos ω 0 t + B sin ω 0 t = C sin (ω 0 t + φ) dx x(0) = a, dt (0) = b x(t) =a cos ω 0 t + b ω 0 sin ω 0 t

K k=0 a k (t) dk u dt k = f(t) f(t) =0

n n n n u 1,u 2,,,,u n α 1 u 1 + α 2 u 2 +,,,,+α n u n

K a k (t) d k k = 0 dt k L L(u) = f (t) L : L(u + v) = L(u) + L(v) L(αu) = αl(u) α :

m c dx dt x(t) m d2 x dt 2 = kx cdx dt

γ = c 2m, ω 0 = k m d 2 x dx + 2γ dt2 dt + ω2 0x = 0 x(t) = e λt x(t) = e λt λ λ 2 + 2γλ + ω 2 0 = 0

d 2 x dx + 2γ dt2 dt + ω2 0x = 0 = λ 2 + 2γλ + ω 2 0 = 0 γ 2 ω 2 0 γ = c/(2m) γ = 0 0 < γ < ω 0 γ = ω 0 γ > ω 0 x = A cos ω 0 t + B sin ω 0 t = C sin (ω 0 t + φ)

d 2 x dx + 2γ dt2 dt + ω2 0x = 0 γ > ω 0 λ 2 + 2γλ + ω 2 0 = 0 λ = γ ± γ 2 ω 2 0 x 1 = e ( γ+ γ 2 ω0 2)t x 2 = e ( γ γ 2 ω0 2)t x = Ae ( γ+ γ 2 ω 2 0 )t + Be ( γ γ 2 ω 2 0 )t

γ > ω 0 x = Ae ( γ+ γ 2 ω 2 0 )t + Be ( γ γ 2 ω 2 0 )t v γ = 5.0 ω 0 = 1.0 x x t

d 2 x dx + 2γ dt2 dt + ω2 0x = 0 0 < γ < ω 0 λ 2 + 2γλ + ω 2 0 = 0 λ = γ ± iω ω = ω 2 0 γ2 x 1 = e ( γ+iω)t = e γt e iωt = e γt (cos ωt + i sin ωt) x 2 = e ( γ iω)t = e γt e iωt = e γt (cos ωt i sin ωt) x 1, x 2 (x 1 + x 2 )/2 = e γt cos ωt (x 1 x 2 )/(2i) = e γt sin ωt x = e γt (A cos ωt + B sin ωt)

0 < γ < ω 0 x = e γt (A cos ωt + B sin ωt) v γ = 0.05 ω 0 = 1.0 x x t

d 2 x dx + 2γ dt2 dt + ω2 0x = 0 γ = ω 0 λ 2 + 2γλ + γ 2 = 0 λ = γ x 1 = e γt x 2 = te γt x = e γt (A + Bt)

γ = ω 0 x = e γt (A + Bt) v γ = 1.0 ω 0 = 1.0 x x t

d 2 x dx + 2γ dt2 dt + ω2 0x = 0 γ = 0 0 < γ < ω 0 γ = ω 0 x = A cos ω 0 t + B sin ω 0 t x = e γt (A cos ωt + B sin ωt) ω = ω 2 0 γ2 x = e γt (A + Bt) γ > ω 0 x = Ae ( γ+ γ 2 ω 2 0 )t + Be ( γ γ 2 ω 2 0 )t

γ = 0 v γ = 0.0 ω 0 = 1.0 x x t 0 < γ < ω 0 v γ = 0.05 ω 0 = 1.0 x x t

γ = ω 0 v γ = 1.0 ω 0 = 1.0 x x t γ > ω 0 v γ = 5.0 ω 0 = 1.0 x x t

0 γ < ω 0 γ > ω 0 γ = ω 0 x = e γt (A cos x = e γt (A + Bt) γ γ = ω 0 ) ω0 2 γ2 t + B sin ω0 2 γ2 t x = Ae ( γ+ γ 2 ω 2 0 )t + Be ( γ γ 2 ω 2 0 )t λ ω 0 0 ω 0 γ λ 2 + 2γλ + ω0 2 = 0 iω 0 iω 0

d 2 x dt 2 + 3dx dt + 2x = 0 d 2 x dt 2 + 2dx dt + 2x = 0 d 2 x dt 2 + 2dx dt + x = 0 d 2 x dt 2 + x = 0 d 2 x dt 2 + dx dt + x = 0 d 2 x dt 2 + 3dx dt + x = 0

x(0) = 1, ẋ(0) = 3 x(0) = 1, ẋ(0) = 0 x(0) = 1, ẋ(0) = 0 x(0) = 3, ẋ(0) = 1 x(0) = 2, ẋ(0) = 1 x(0) = 2, ẋ(0) = 3

ma cos ωt (A > 0, ω > 0) m d 2 x dx + 2γ dt2 dt + ω2 0x = A cos ωt 0 < γ < ω 0 ω

z(t) = x(t) + iy(t) d 2 z dz + 2γ dt2 dt + ω2 0z = Ae iωt z(t) x(t) d 2 x dx + 2γ dt2 dt + ω2 0x = A cos ωt y(t) d 2 y dy +2γ dt2 dt + ω2 0y = A sin ωt

=) d 2 z dz + 2γ dt2 dt + ω2 0z = Ae iωt z s (t) =R(ω)Ae iωt R(ω) {(ω 2 0 ω 2 )+2γωi}R(ω)Ae iωt = Ae iωt R(ω) = 1 (ω 2 0 ω2 )+2γωi

2 au 1 + bu 2 2 2

K a k (t) d k k = 0 dt k L(u) = f (t) L S 1 S 2 S 1 S 2 proof L(S 1 ) = f (t) L(S 2 ) = f (t) L(S 1 S 2 ) = L(S 1 ) L(S 2 ) = f (t) f (t) = 0

2 S 1 (= ) S 2 S 3 (= )

K a k (t) d k k = 0 dt k L(u) = 0 L u 1 u 2 αu 1 + βu 2 ( α,β Z) proof L(u 1 ) = 0 L(u 2 ) = 0 L(αu 1 + βu 2 ) = αl(u 1 ) + βl(u 2 ) L(αu 1 + βu 2 ) = αl(u 1 ) + βl(u 2 ) = 0

R(ω) R(ω) = 1 (ω 2 0 ω2 )+2γωi R(ω) =R 0 (ω)e iφ(ω) R 0 (ω) R 1 = R 1 0 eiφ R 0 (ω) = φ(ω) 0 < φ(ω) < π 1 (ω 2 0 ω 2 ) 2 + 4γ 2 ω 2 φ(ω) = Arg((ω 2 0 ω 2 ) + 2γωi) R 1 =(ω 2 0 ω 2 )+2γωi φ(ω)

x s (t) d 2 x dx + 2γ dt2 dt + ω2 0x = A cos ωt R 0 (ω), φ(ω) z s (t) =R 0 (ω)ae i(ωt φ(ω)) x s (t) = R 0 (ω)a cos (ωt φ(ω)) A cos ωt x s (t) t R 0 (ω) φ(ω)

d 2 x dx + 2γ dt2 dt + ω2 0x = 0 d 2 x dx + 2γ dt2 dt + ω2 0x = f(t) x s x = x s + y x s x y = x x s y

d 2 x dx + 2γ dt2 dt + ω2 0x = A cos ωt x s (t) = R 0 (ω)a cos (ωt φ(ω)) x(t) = x s (t) + e (B γt cos ω 2 0 γ2 t + C sin B, C ) ω0 2 γ2 t

γ > 0 d 2 x dx + 2γ dt2 dt + ω2 0x = A cos ωt x s (t) = R 0 (ω)a cos (ωt φ(ω)) x s (t) x(t) A cos ωt

R 0 (ω) ω > 0 R 0 (ω) ω R 0 ( ω) γ < ω 0 / 2 ω = ω0 2 2γ2 R 0 ( ω) = ω 0 = 1, γ = 0.1 ω R 0 ( ω) 1 2γ ω 2 0 γ2 ω ω = 1 0.02 = 1 0.01 = 0.99 1 R 0 ( ω) = 2 0.1 1 0.01 = 5 ω

ω R(ω) R 0 (ω) π 0 φ(ω) ω 0

ẍ +ẋ + x = cos t x(0) = 2, ẋ(0) = 0 z +ż + z = e it z s (t) =Re it ir =1 R = i z s (t) = ie it = i(cos t + i sin t) = sin t i cos t x s (t) = Re z s (t) = sin t 3 x(t) = sin t + e t/2 (A cos 2 t + B sin 3 x(t) = sin t +2e t/2 cos 2 t 3 2 t)