,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

Similar documents



II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

chap03.dvi

TOP URL 1

振動と波動

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

30

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

meiji_resume_1.PDF

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n


TOP URL 1

( )

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

2011de.dvi

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

構造と連続体の力学基礎


SFGÇÃÉXÉyÉNÉgÉãå`.pdf

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

QMII_10.dvi

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

gr09.dvi

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Part () () Γ Part ,

I ( ) 2019

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Note.tex 2008/09/19( )

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

b3e2003.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1


I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Z: Q: R: C:

Z: Q: R: C: 3. Green Cauchy

量子力学 問題

The Physics of Atmospheres CAPTER :

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

dynamics-solution2.dvi

Z: Q: R: C: sin 6 5 ζ a, b

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds


QMI_09.dvi

QMI_10.dvi

pdf

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

2 2 L 5 2. L L L L k.....

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

KENZOU

08-Note2-web

arxiv: v1(astro-ph.co)

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,



c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

B

Holton semigeostrophic semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu +

( ) ,

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

Gmech08.dvi

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

Microsoft Word - 11問題表紙(選択).docx

30 (11/04 )

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

201711grade1ouyou.pdf

TOP URL 1

eto-vol2.prepri.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

IA

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

untitled

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

B ver B


Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

Transcription:

29 2 1 2.1 2.1.1.,., 5.,. 2.1.1,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c v., V = (u, w), = ( / x, / z).

30 2.1.1:

31., U p(z), ᾱ., ᾱ p z = g., ( ).,. u = U + u, w = w p = p(z) + p, α = ᾱ(z) + α (2.2.2) (2.2.1), (2.2),., 2. ( p ᾱ ( u u t + U u x + ᾱ p x = 0 ( ) w δ 1 t + U w + ᾱ p x z a ᾱ g = 0 ) ( t + U p α gw + pγ x t + U α x ) ( ) x + w α ᾱ δ 2 z t + U α x + w ᾱ z w ᾱ z = 0 ) = 0 (2.2.3), δ 1, δ 2,, 1 0.

32 2.3, g = 0, δ 1 = δ 2 = 1, ᾱ, p., x, y, t. u = S exp [i(kx + mz σt)], p = P exp [i(kx + mz σt)], w = W exp [i(kx + mz σt)] α = A exp [i(kx + mz σt)] (2.3.4), x, z k, m, σ.. (2.2.3),.,. (2.3.4) (2.2.3), S, W, P, A (ku σ) 0 ᾱk 0 S 0 (ku σ) ᾱm 0 W 0 0 ᾱ(ku σ) pγ (ku σ) P = 0 (2.3.5) ᾱk ᾱm 0 (ku σ) A. S, W, P, A,.. ᾱ(ku σ) 2 [ (ku σ) 2 + γ pᾱ(k 2 + m 2 ) ] = 0 (2.3.6) 4 4. 2, σ = ±ku,. 2, σ = ku ± (k 2 + m 2 ) 1/2 γr T.,., x U., (kx + mz = constant).. c = σλ/2π, λ. λ x = 2π/k, λ z = 2π/m, λ =

33 2π(k 2 + m 2 ) 1/2 *1. λ, c = σ(k 2 + m 2 ) 1/2 (2.3.7)., U = 0 (2.3). c = ± γr T (2.3.8). ( ). 2.4,., 0 = ᾱ p z g pᾱ = R T p ᾱ., p(z) = p(0)e z/h, ᾱ(z) = ᾱ(0)e z/h (2.4.9)., H = R T /g. U x U, U = 0. *1, k (k, m), k = (k 2 + m 2 ) 1/2.,. λ (λ x, λ z ), λ = 2π/(λ 2 x + λ 2 z)..

34 (2.2.3), u t + ᾱ p x = 0 w δ 1 t + ᾱ p z a ᾱ g = 0 ( ) ᾱ p α t ᾱ gw + pγ + w = 0 t z ( ) u x + w α ᾱ ᾱ δ 2 w z t z = 0.. (2.4.10) u = Sᾱ 1/2 e i(kx+mz σt), w = W ᾱ 1/2 e i(kx+mz σt) (2.4.11) p = Sᾱ 1/2 e i(kx+mz σt), α = W ᾱ 3/2 e i(kx+mz σt) (2.4.10), σ 0 k 0 0 δ 1 σ m + i ᾱ ig S ( ) 2α z W γr T ᾱ 0 g + i σ γr ᾱ z T σ P = 0 (2.4.12) k m + i ᾱ A 0 δ 2 σ 2α z.,. (2.4.9),. δ 1 δ 2 σ 4 {γr T (δ 1 k 2 + m 2 ) + g 4H [(2δ 2 1)γ + 2(1 δ 2 )] (2.4.13) + g(1 γ)(δ 2 1)im}σ 2 + k 2 g 2 (γ 1) = 0 2π/m 4πH, σ 2 g γr T m 2..,. δ 1 δ 2 σ 4 γr T (δ 1 k 2 + m 2 )σ 2 + γr T k 2 ḡ θ θ z = 0 (2.4.14) 4, 2 2. g = 0,., δ 2 = 0( ) δ 1 = 1. σ 2 = k 2 ḡ θ θ z (2.4.15) k 2 + m 2

35., c = σ k = ± k k 2 + m 2 ( ḡ θ θ ) 1/2 (2.4.16) z.,. ( θ/ z > 0),., ( θ/ z < 0),. (k 2 m 2 ), (2.4.15) ( ḡ σ ± θ ) 1/2 (2.4.17) θ z., - (Brunt- Vaisäla).,, (2.4.14) δ 1 = 0., σ 2 = k2 g θ (2.4.18) m 2 θ z., m 2 k 2 (2.4.15)., m m. e i(kx+mz σt) + e i(kx mz σt) = 2 cos mz e i(kx σt), σ m., c = σ k = ± 1 m ( ḡ θ ) 1/2 (2.4.19) θ z., k.,. (2.4.14), (δ 1 = 0) (δ 2 = 0),.,. (2.4.11) ᾱ 1/2,.,.

36 (2.2.3) (2.4.11).,., (2.2.3). u = Se (γ 1)z/γH e ik(x ct), w = 0, p = P e z/γh e ik(x ct), α = Ae (2γ 1)z/γH e ik(x ct). (2.4.20), c = ± γr T. (Lamb wave) *2., w = 0.,.,. 2.5.,., α = 0.,. (2.2.3). *2 w = 0, (2.4.20). w = 0 (2.2.3) ᾱ p t u t + ᾱ p x = 0, α + pγ t = 0, ᾱ p z a ᾱ g = 0 u x ᾱ α = 0 t 4, p 2 p z x 2 = g 2 p c 2 s x 2, 2 p t 2 + 2 p c2 s x 2 = 0 2., c 2 s = γr T., H(= R T /g) p = P e z/γh e ik(x c st) (2.4.21). u, α, p.

37,. u t + U u ( x w δ t + U w ) x. p z + ρ p x = 0 + ρ p z = 0 u x + w z = 0 (2.5.22a) (2.5.22b) (2.5.22c) = ρg (2.5.23) z = 0 H, z = 0 p 0 = g ρh., (2.5.22a), u = ψ(z)e ik(x ct) w = Φ(z)e ik(x ct) (2.5.24) p/ ρ = P (z)e ik(x ct) (U c)ψ(z) + P (z) = 0 dp (z) ikδ(u c)φ(z) + dz ikψ(z) + dφ(z) = 0 dz = 0 (2.5.25). 2 P (z), ψ(z), d 2 Φ(z) dz 2 k 2 δφ(z) = 0 (2.5.26)., δ = 1 δ = 0., Φ(z) = a 1 e kz + a 2 e kz δ = 1, Φ(z) = a 1z + a 2 δ = 0.., a 1, a 2, a 1, a 2.,. (δ = 1) a 1 = a 2 = a, Φ(z) = a(e kz e kz ) δ = 1 (2.5.27)

38,. Φ(z) = 2akz +, (δ = 0) a 2 = 0, a 1 = a, Φ(z) = az. (2.5.28) 2, ( )., d( p + p) dt = 0., z = H., p t + U p x + w p z = 0 at z = H (2.5.29) (2.5.27) (2.5.28), (2.5.25). (δ = 1). Φ(z) = 2a sinh(kz), ψ(z) = 2ia cosh(kz), P (z) = 2ia(U c) cosh(kz). (2.5.29),. c = U ± [ ] 1/2 gλ 2π tanh(2πh λ ) (2.5.30) (δ = 0). Φ(z) = az, ψ(z) = ia k. (2.5.29),., P (z) = ia(u c) k c = U ± gh (2.5.31)

39 (2.5.31), (shallow water wave). (2.5.30) H/λ, gλ c U ± 2π. (deep-water wave),. H/λ, (2.5.30) (2.5.31),,. gh = p 0 /ρ = RT, (2.5.31) c = U ± RT (2.5.32). (2.3.8). (2.5.31),.,.,., g ρ(h z) = p (2.5.33)., h. u = U + u, h = H + h (x, t), p = p(z) + p (x, z, t)., 1 p ρ x = g h x (2.5.34)., (2.5.22a) 1. u t + U u x + g h x = 0 (2.5.35) u h 2. (2.5.35) h z, u z u., z = 0 w = 0. (2.5.22a) 3 z = 0 h, w z=h = u x h.

40, 2 w z=h = dh dt = h t + u h x ( ρh) t., + ( ρuh) x = 0 (2.5.36) h t + U h t + H u x = 0 (2.5.37). h u z,. u = u 0 e ik(x ct), h = h 0 e ik(x ct), u 0 h 0. (2.5.35) (2.5.37),,. c = U ± gh, (external gravity wave).,, (internal gravity wave).. Haltiner and Martin(1957), 2 0., c = ρu + [ ρ U ] gλ(ρ ρ ) ± ρ + ρ 2π(ρ + ρ ) ρρ (U U ) 2 1/2 (ρ + ρ ) 2.,,.,. ρ = 0,., U = U, ρ = ρ.,. (Kelvin-Helmholtz wave).

41 2.6,.,.,.,. u t + u u x + v u h fv + g y x = 0 v t + u v x + v v h + fu + g y y = 0 (2.6.38a) (2.6.38b),.,.,.,. u x + v y + w z = 0 (2.6.39) (2.5.36), u h h t + (hu) x + (hv) y = 0 (2.6.40). (2.6.38a), (2.6.38b), (2.6.40) 3 (u, v, h) 3. (shallow-water equation). (2.6.38b) x, (2.6.38a) y,. (2.6.40),, ζ t + u ζ x + v ζ y ( u + βv = (f + ζ) x + v ) = (f + ζ) 1 dh y h dt (2.6.41)., f y, β = f/ y., ( ) d ζ + f = 0 (2.6.42) dt h. (ζ + f)/h., (potential vorticity)

42., Ertel(1942). (2.6.42),,.,.,. (ζ + f)/2, (2.6.42). (2.6.38a), (2.6.38b), (2.6.40), h = H + h, u = U + u, v = v. U, H U., U = g f H y (2.6.43)., H, U y. f y,. ( u δ t + U u x ) fv + g h x = 0 v t + U v x + fu = 0 h t + U h x + H u x + v H y = 0 (2.6.44),., δ dd/dt (D = u/ x + v/ y). x, y x y. v y, u., H,. u = u 0 e ik(x ct), v = v 0 e ik(x ct), h = h 0 e ik(x ct), (2.6.44). δ(u c)iku 0 fv 0 + gikh 0 = 0 (2.6.45) fu 0 + ik(u c)v 0 = 0 (2.6.46) ikhu 0 + H/ y v 0 + ik(u c)h 0 = 0 (2.6.47)

43 u 0, v 0, h 0,., 3. δ(u c) 3 (gh + f 2 /k 2 )(U c) fg k 2 H y = 0 (2.6.48)., U = 0, δ = 1 c = ± gh + f 2 /k 2 (2.6.49) c = 0. (inertial gravity wave), f = 0 (2.6.49). 1 2,. σ = kc = ±f (2.6.50), (1/k), gh.,, du dt = fv, dv dt = fu 2, d 2 u dt 2 + f 2 u = 0. u = u 0 e ±ift,. 2π/f = 12/ sin φ hour.,.,.,.

44 (2.6.48), δ = 0 *3. c = U + (f/h) H/ y k 2 + (f 2 /gh), q = f/h. q y, q y = f H H 2 y = f 2 U (2.6.51) gh 2, H(z) y., y. (2.6.51), c = U H q/ y k 2 + (f 2 /gh) (2.6.52). (Rossby wave) *4,., f., ( q y = β f H ) H /H = β + (f 2 U/gH) y H (2.6.53)., β = df/dy., k q. f, (2.6.52) q/ y (2.6.53)., y,. (2.6.44) δ = 0, (2.6.48). v., *3 δ = 0 fv = g h x. (2.6.54) fv + g h x = 0 v t + U v x + fu = 0 h t + U h x + H u x + v H y = 0. *4,. (2.6.52),.,,,.

45 u *5,. x y, (2.6.38a) (2.6.38b).,,.,. 2,., y,. D ζ = u/ x v/ x (2.6.55) (U = 0),. (2.6.45) e ik(x ct), v = if kc u (2.6.56) c (2.6.49), (2.6.55) D ζ = 1 + k 2 ghf 2 (2.6.57) I G. 1.,. (δ = 0), h. (2.6.54). v x = g k2 h. (2.6.58) f, (2.6.44) u h. 2 u x f 2 2 gh u = U 2 h (2.6.59) H x 2 *5 δ = 0, u = g 2 f 2 (hu Hu) x2., (hu Hu).

46. x, u x = ikug gh + (f 2 /k 2 ) h (2.6.60). (2.6.58) (2.6.60) (2.6.55),. D (Uk/f) ζ = (2.6.61) R (k 2 gh/f 2 ) + 1 (Rossby number), 0.1. 1,..

47 2.7,. 2., (H = 10km ) 300 m/s., 10 m/s.,.,. (δ = 1),., (Hinkelmann,1951; Phillips, 1960)., (2 ) (1 ) 3. c j (j = 1, 2, 3). c j, (u j, v j ) (h j )., (2.6.44), 3 u j, v j, h j 1 j. u j = U c j, δ = 1 (2.6.44) 2., u j = U c j. k, 3 u = a j u j e ik(x c jt) v j = if/k h j = g [ (2.7.62) 1 f 2 /k 2 (U c j ) 2] v = h = j=1 3 a j v j e ik(x c jt) j=1 3 a j h j e ik(x c jt) j=1., a j. u, v, h. u(x, 0) = u 0 e ikx, v(x, 0) = v 0 e ikx, h(x, 0) = h 0 e ikx (2.7.63), u 0, v 0, h 0. (2.7.63), u 0 = j=1 a j u j, v 0 = j=1 a j v j, h 0 = j=1 a j h j

48.,. c 1 = U U 1 + (ghk 2 /f 2 ) c 2 = U + gh + (f 2 /k 2 ) c 3 = U gh + (f 2 /k 2 ) (2.7.64) (2.7.62) (2.7.64), (2.7) a j. a 1 = ikf 1 ghv 0 gh 0 U 2 f 4 k 4 α 2 α a 2,3 = (u 0 /2α 1/2 ) ifk 1 (1 ± Uα 1/2 )v 0 + gh 0 2(Uf 2 k 2 α 1/2 ± α) (2.7.65), α = gh + f 2 k 2.. u = g f, h y = 0, v = g f h x u 0 = 0, v 0 = ikf 1 gh 0 (2.7.66). (2.7.65), j k 2 f 2 gh 0 a 1 = 1 U 2 f 4 k 4 α 3 Uα 3/2 gh 0 a 2,3 = 2(1 ± Uf 2 k 2 α 3/2 ) (2.7.67).,. α 1/2 > fk 1 U (2.7.68) v (v 1 a 1 = ifk 1 a 1 ) v 0, v 0 *6., *6 v 0 (a 1 v 1 ) v 0, v 1 a 1 v 0 = (1 U 2 f 4 k 4 α 3 ) 1 (2.7.68), U 2 f 4 k 4 α 3 1., v 1 a 1 v 0 1 + U 2 f 4 k 4 α 3, v 0 a 1 v 1.

49. (2.7.66)., a 2,3 a 1 = U gh f 2 k 2 gh. (2.7.69), (2.7.68).,. u 0,. (2.7.65) a 2,3 = 0, v 0, u 0. Ugh 0 u 0 = (2.7.70) gh + f 2 k 2 (2.7.68), α U 2 f 4 k 4 α 2. u = u 0 e ikx, (2.6.60). 2.8 2 1,.,, *7.,,,.,.,. *7 (2.6.44), x U u, y v. u, v,.,.,., (, ) 2.3.

50. u t fv + g h x = 0 v t + fu = 0 h t + H u x = 0 (2.8.71), (2.6.44) U = 0., 3., 2 (2.6.49) (2.6.52). H q/ y = 0,. Rossby(1938), Cahn(1945)., Schoenstadt(1977)., x u(x, t) x., ũ(k, t) = u(x, t) = u(x, t)e ikx dx (2.8.72) ũ(k, t)e ikx dk (2.8.73). v, h., (2.8.71) e ikx, x. x,., *8 dũ = fṽ ikg h dt dṽ dt = fũ d h dt = ikhũ (2.8.74), u ũ 0 = ū(k, 0) = u(x, 0)e ikx dx (2.8.75) *8, k., ũ(k, t)/ t dũ/dt.

51., v 0, h 0. ũ 0, ṽ 0, h 0 (2.8.74) *9, ( ) fṽ 0 ikg h 0 ũ(k, t) = ũ 0 cos νt + sin νt ν ( ) ṽ(k, t) = k2 ghṽ 0 + ikgf h 0 fũ 0 f 2 ṽ 0 ikgf h 0 sin νt + cos νt (2.8.76) ν 2 ν ν 2 h(k, t) = f 2 h0 ikhfṽ 0 ikhũ 0 sin νt + ν 2 ν., ( k 2 gh h 0 + ikhṽ 0 ν 2 ) cos νt ν = f 2 + k 2 gh (2.8.77)., ( ). U = 0, c 1 = 0, c 2,3 = ±ν/k., ( ) s ( ) T. ũ s (k) = 0 ( ) ṽ s (k) = ikg f 2 h0 ikfhṽ 0 f ν 2 ( ) f h 2 h0 ikfhṽ 0 s (k) = ν 2 (2.8.78) ũ T (k, t) = ũ 0 cos νt + f ν (ṽ 0 if 1 kg h 0 ) sin νt ṽ T (k, t) = f ν ũ0 + f 2 ν (ṽ 2 0 if 1 kg h 0 ) cos νt (2.8.79) h T (k, t) = ikh ν ũ0 sin νt + ikhf (ṽ ν 2 0 if 1 kg h 0 ). (2.8.78), ṽ s = ikgf 1 h s, ũ s = 0., (2.8.74) d/dt., (2.8.79), ((ṽ 0 ikgf 1 h 0 ) ũ 0 ). *9 : (2.8.74).

52,.,., u T (x, t) = 1 2π v T (x, t) = 1 2π h T (x, t) = i 2π, ũ 0 cos νt e ikx dk + 1 2π fũ 0 ν sin νt eikx dk + 1 2π khũ 0 ν sin νt e ikx dk + i 2π d(x, t) = v(x, t) g f f 2 h (x, t) x f ν d(k, 0) sin νt e ikx dk ν d(k, 0) cos νt e ikx dk 2 khf ν 2 d(k, 0) cos νt e ikx dk (2.8.80),. Schoenstadt(1977), (2.8.80). x, x L R ft = ght, *10. u T 1 2πα [ ũ(x/α, 0) cos(ft + φ) + d(x/α, 0) sin(ft + ψ)] v T 1 2πα [ ũ(x/α, 0) sin(ft + φ) + d(x/α, 0) cos(ft + ψ)] (2.8.81) h T 1 ( Hx) 2πα fα [ ũ(x/α, 0) sin(ft + φ) d(x/α, 0) cos(ft + ψ)], ψ φ., L R = gh/f, α = L 2 Rft. (2.8.81), u T, v T x t 1/2, h T t 3/2.,,., G. G = ν k = kgh f 2 + k 2 gh = gh f L 2 + L 2 R (2.8.82), 2πL = 2π/k., L R, c = gh,.,. (2.8.81), x *10 (2.8.80),.

53, x,., L 2 R /L2., (2.8.78). ( ) 1 L 2 ṽ s = R 1 + (L 2 R /L2 ) L 2 ṽ0 + ikf 1 g h 0 ( ) (2.8.83) 1 L 2 h s = R fṽ 0 1 + (L 2 R /L2 ) L 2 ikg + h 0,., ṽ 0 ikf 1 g h 0. L 2 L 2 R., (2.8.83) ṽ s = ṽ 0, hs = fṽ 0 ikg (2.8.84).,., L 2 L 2 R (2.8.83) ṽ s = ikf 1 g h 0, hs = h 0 (2.8.85).,.. L R,., L R,., 2., L R = c g /f(c g )., Okland(1970)., H 10 km, L R = 3000 km, 2πL R = 18000 km., 5000 km 2πL R., c g 100ms 1, L R 1000 km. 2πL R 6000 km,.,. f

54,.,.., h s (x) = h(x, 0) h T (x, 0), h T (x, 0) (2.8.79), h s (x) = h(x, 0) 1 2π Hfik ν 2 d0 e ikx dk (2.8.86)., d 0.,. 1 2π F (k) G(k) e ikx dk = F (x ) G(x x ) dx (2.8.87), F, G F, G., e x /L R e x /L R e ikx dx = 2L R = 2L Rf 2 1 + k 2 L 2 R ν 2., G(x) = e x /L R, F (x) = d(x, 0)/ x *11, (2.8.87), (2.8.86) h s (x) = h(x, 0) H e x x /L R d(x, 0) dx (2.8.88) 2L R f x., h s (x). h s (x) = h(x, 0) + H x x 2L 2 R f x x e x x /LR d(x, 0) dx (2.8.89), x L R., (2.8.89)., v s (x) = fg 1 h s / x, u s = 0 (2.8.90) 2,.,.,. *11 G(k) = 2L R f 2 /ν 2, F (k) = ik d(k).

55,,,. 2,,.,,.,,., L 2 /L 2 R., L R = c g /f, c g. L L R,. L L R,.,.

56 : (2.8.74) 3 s = (s 1, s 2, s 3 ) = (ũ, ṽ, h), (2.8.74) G ds = Gs (2.8.91) dt.,. 0 f ikg G = f 0 0 ikh 0 0 (2.8.92) G. G λ 1, λ 2, λ 3, p 1, p 2, p 3., G P = [p 1 p 2 p 3 ] *12. P 1 GP = diag(λ 1, λ 2, λ 3 ) (2.8.93) G, G 3., G. G, P 0 1 1 P = 1 if/ν if/ν (2.8.94) if/(kg) kh/ν kh/ν., G. P 1 GP = diag(0, iν, iν) (2.8.95), P s = P s. (2.8.91) P 1, ds dt = P 1 GP s (2.8.96) *12 P,.

57. (2.8.95), ds dt = diag(0, iν, iν) s (2.8.97). s = (s 1, s 2, s 3), s 1 = C 1, s 2 = C 2 e iν, s 3 = C 3 e iν (2.8.98), C 1, C 2, C 3. s P, (2.8.91). 0 1 1 s = C 1 1 + C 2 e iνt if/ν + C 3 e iνt if/ν (2.8.99) if/(kg) kh/ν kh/ν (2.8.76), (2.8.99) C 1, C 2, C 3 s (u 0, v 0, h 0 )., t = 0 (2.8.99) C 1, C 2, C 3.,. : (2.8.80) *13,. f(t) = g(k)e iθ(t,k) dk (2.8.100), θ(k, t) k, g(k) k. e iθ k, g(k) k,., f(t)., θ/ k = 0 *13, (http://www.ep.sci.hokudai.ac.jp/ yamasita/phys-math-approx.pdf).

58. k = k s, ε, f(t). f(t) ks +ε k s ε g(k)e iθ(t,k) dk (2.8.101) θ(t, k) k = k s, 2 θ(k) θ(k s ) + 1 2 θ 2 k 2 (k k s ) 2 k=ks (2.8.101)., g(k) g(k s ), k, ks +ε [ ] f(t) g(k s ) e iθ(t,k s) i 2 θ exp 2 k 2 (k k s ) 2 dk (2.8.102) k=ks k s ε., k = k s θ/ k = 0. g(k) = A(k)/2π, θ(k, t) = kx + νt, x t f(t)., (2.8.102), t f(t) 1 2π A(k s) e i(k sx+ν(k s )t) ks+ε k s ε., θ ν ν = f 1 + L 2 R k2 [ exp i t ] 2 ν 2 k 2 (k k s ) 2 dk (2.8.103) k=ks., L R = (gh) 1/2 /f. ν k 1 2, ν k = f fl 2 R k (1 + L 2 R k2 ), 2 ν 1/2 k = 2 fl 2 R (1 + L 2 R k2 ) 3/2, 0 = θ/ k = x + ( ν/ k)t k. t, x/l R k s = (L 2 R f (2.8.104) 2 t 2 x 2 ) 1/2., k = k s 2 ν k 2 = [f 2 L 2 R t2 x 2 ] 3/2 > 0 k=ks f 2 L R t 3

59. (2.8.103), { t p = (k k s ) 2 ν 2 k (k s)) 2 } 1/2. p, t. (2.8.103), f(t) 2 A(k s) e i(k sx+ν(k s )t) [ ( )] ( ) t 2 ν 1/2 exp ip 2 2 ν sgn k 2 k (k s) dp (2.8.105) 2., sgn(a) A 1, -1. Fresnel *14, f(t) 2π A(k [ s) e i(ksx+ν(ks)t) ( ) t 2 ν 1/2 exp i π ( )] 2 4 sgn ν k (k s) (2.8.106) 2 k 2. k s θ(k s ), k = k s 2 ν/ k 2,. f(t) ( L 2 R 2π f ) 2 t 2 1/2 [ (L 2 [L 2 R f A(k 2 t 2 x 2 ] 3/2 s ) exp i R f 2 t 2 x 2 ) 1/2 + π ] (2.8.107) 4 2 ν/ k 2, π/4 π/4. L 2 R (2.8.80) x L R ft(= ght) x, t (2.8.80). I(x, t) = 1 2π J(x, t) = 1 2π A(k) cos νt e ikx dk, A(k) sin νt e ikx dk. A(k)., 1. I(x, t) = 1 2π 1 { } A(k) e iθ1(k) dk + A(k) e iθ2(k) dk (2.8.108) 2 *14 Fresnel. 0 cos x 2 dx = 0 sin x 2 dx = 1 2 π 2

60., θ 1,2 (k) = kx ± νt., ν = f(1 + L R k 2 ) 1/2. (2.8.107), θ 1. θ 2., θ 2 / k = 0 k(= k 2s ), k 1s = k 2s, ν. θ 1 (k 1s ) = θ 2 (k 2s ), 2 ν k (k 1s) = 2 ν 2 k (k 2s) > 0 2 x L R ft, (2.8.104) k 1s = k 2s x/α, ν(k 1s ) = ν(k 2 s) f (2.8.109)., α = L 2 Rft., (2.8.107), θ 1 = kx + νt [ 2π f(t) α A(k 1s) exp i ft + π ( )] 2 4 sgn ν k (k s) 2 θ 2 = kx νt, [ 2π f(t) α A(k 2s) exp i ft π ( )] 2 4 sgn ν k (k s) 2., I(x, t) I(x, t) 1 2 2πα. (2.8.110) (2.8.111) { A(k1s )e i[ft+(π/4)] + A(k 2s )e i[ft+(π/4)]} (2.8.112), A(k), A( k) = A (k).,., (2.8.112), I(x, t) 1 { Re[A(k 2s )] cos(ft + π 2πα 4 ) + Im[A(k 2s)] sin(ft + π } 4 ) (2.8.113) *15., J(x, t) 1 2πα { Re[A(k 2s )] sin(ft + π 4 ) Im[A(k 2s)] cos(ft + π 4 ) } (2.8.114) *15 k 1s = k 2s,,. A(k 1s ) = A( k 2s ) = A (k 2s ) A e iθ + Ae iθ = 2(Re[A] cos θ + Im[A] sin θ)

61., I(x, t) 1 2πα A(k 2s ) cos(ft + φ k ), J(x, t) 1 2πα A(k 2s ) sin(ft + φ k )., { [ReA(k)] 2 + [ReA(k)] 2} 1/2 = A(k) (2.8.115)., φ k = π 4 arg(a(k))., (2.8.109) (2.8.115), (2.8.80) (2.8.81) *16. *16 3. ũ, (2.8.80) 3 ik ũ 0 (k)(b(k) ) B( k) = ik ũ 0 ( k) = ik ũ 0(k) = B (k), ik ũ 0 (k)., (2.8.115) A(k), ik ũ 0 (k). A(k s ),. A(k s ) = ik s ũ 0 = k s ũ 0 (k s )