I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Similar documents
agora04.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

I

数学の基礎訓練I

29


2000年度『数学展望 I』講義録

I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

Part () () Γ Part ,

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

meiji_resume_1.PDF

量子力学 問題

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

基礎数学I

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

TOP URL 1

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

201711grade1ouyou.pdf

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

: , 2.0, 3.0, 2.0, (%) ( 2.

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Note.tex 2008/09/19( )

Z: Q: R: C:


Z: Q: R: C: sin 6 5 ζ a, b

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

/02/18

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f


2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

keisoku01.dvi

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

, ( ) 2 (312), 3 (402) Cardano

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

newmain.dvi

A

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

°ÌÁê¿ô³ØII

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

chap1.dvi

n ( (

*3 i 9 (1,) i (i,) (1,) 9 (i,) i i 2 1 ( 1, ) (1,) 18 2 i, 2 i i r 3r + 4i 1 i 1 i *4 1 i 9 i 1 1 i i 3 9 +


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

II 2 II

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

, = = 7 6 = 42, =

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

Microsoft Word - 信号処理3.doc

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

液晶の物理1:連続体理論(弾性,粘性)

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d


50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

Transcription:

I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17 6 4 7 1 7 8 7 15 * 7 0 * 7 7 9 * 59 F60 69 C70 79 B80 89 A90 100 S A4 A4

I013 00- Cafe David Cafe David 1:00 13:30 1 (1) C: () R: (3) Q: (4) Z: (5) N: (6) : (1) α: () β: (3) γ, Γ: (4) δ, : (5) ϵ: (6) ζ: (7) η: (8) θ, Θ: (9) ι: (10) κ: (11) λ, Λ: (1) µ: (13) ν: (14) ξ, Ξ: (15) o: (16) π, Π: (17) ρ: (18) σ, Σ: (19) τ: (0) υ, Υ: (1) ϕ, Φ: () χ: (3) ψ, Ψ: (4) ω, Ω: (1) x X x X x X () X {x X x } N = {n Z n > 0} (3) X Y X Y (4) f : X Y f X Y ( (5) A := B A B e := lim 1 + 1 n. n n) (6) 1: ( ) 1 {a n } : M n a n M

I013 01-1 : April, 013 Version : 1.1 1 (4/15) 1,, 3,... 1, 1 3, 3,..., etc. 5 = 1 3 + 1 15 p q = 1 a 1 + 1 a + + 1 a n 5C 1 1C 0 808 DCCCVIII 7C 0 18C 187 (Dedekind, 1831 1916) 1891 (Peano, 1858 193) 19C (Kronecker, 183 1891). 17C 150 a 0, b, c ax + bx + c = 0 x = b ± b 4ac 6C a x. (a, b, c) = (1, 0, ) 1 x + 0 x + ( ) = 0 x = 0 x = ±

I013 01- (a, b, c) x. (a, b, c) = (1, 0, 3) x + 3 = 0 x x 0 3 x x. x = 0 x = ± ( ) = ( 3) = 3 3 x + 3 = 0 x = ± 3. (a, b, c) = (1, 1, 1) x + x + 1 = 0. x = 1 ± 3 ( ) 1 ± 3 + 1 ± 3 + 1 0 16C 3 4 1541 1501 1576 3 4 10 40 5 + 15 5 15 17C 3 (imaginary number) 18C 1799 1777 1855 19C

I013 01-3 5 13 1 1 1-1. z = i, w = 3 + i z (1) z + w () z w (3) z w (4) w 1-. z = a + biw = c + di a, b, c, d (1) z w = z w. () w 0 z = z w w (3) z + w z + w 1-3.

I013 0-1 : May 13, 013 Version : 1.1 5/0 7 http://www.math.nagoya-u.ac.jp/~kawahira/courses/kansuron.pdf http://www.math.nagoya-u.ac.jp/~kawahira/courses/kansuron_in1.pdf A4 (4/) 1. x = x = ± x = 1 x = ± 1 1 i i. a b a + bi i (complex number) C C := {a + bi a, b R}. b = 0 a + 0i a C R C 3. C z = a + bi, w = c + di C (C0) a + bi = 0 a = b = 0 (C1) z ± w := (a ± c) + (b ± d)i (C) zw := (ac bd) + (ad + bc)i (C3) w 0 z ac + bd ad + bc := w c + + d c + d i 4. xy R R := {(a, b) a, b R}. (a, b) a + bi xy R C (a, b) a + bi i (0, 1) (C0) (C1) (C0) (a, b) = 0 a = b = 0 (C1) (a, b) ± (c, d) = (a ± c, b ± d)

I013 0- (C) (a, b) (c, d) := (ac bd, ad + bc) ( ) ac + bd ad + bc (C3) (a, b) / (c, d) := c, + d c + d (C) (C3) (C) (0, 1) (0, 1) = ( 1, 0) i = 1 i (C0) (C3) C xy xy R (a, b) (a, 0) (0, 1) (0, b) (0, 0) x y (a, b) x a (a, b) y b C a + bi a R i bi Ri 0 C R Ri a + bi a a + bi b. z = a + bi a Re z b Im z z z = a + b (a, b) (a, b) x z = a + bi arg z

I013 03-1 : May 7, 013 Version : 1.1 6/3 7 7/15, 0, 9 3 (5/13) 1.. 3. z i iz z 90 = 4. z = a+bi 0 r = z > 0arg z = θ a = r cos θ, b = r sin θ z z = r(cos θ + i sin θ) z (polar form) (polar representation) 1 1 = cos 0 + i sin 0 i = cos π + i sin π 1 = cos π + i sin π i = cos 3π + i sin 3π 1 + i = (cos π 4 + i sin π 4 ) 3 + i = (cos 5π 6 + i sin 5π 6 ) 5. 0 z w z = r(cos θ + i sin θ), w = r (cos θ + i sin θ ). (C) zw = rr (cos θ + i sin θ)(cos θ + i sin θ ) = rr { (cos θ cos θ sin θ sin θ ) + i(sin θ cos θ + cos θ sin θ ) } = rr { cos(θ + θ ) + i sin(θ + θ ) } 1 r = 1 z = cos θ + i sin θ z = e iθ e iθ = cos θ + i sin θ

I013 03- w = i r = 1, θ = π/ iz = r{cos(θ + π/) + i sin(θ + π/)} z π/ i π/ w = r (cos θ + i sin θ ) r θ 0, 1, z w w arg w 0, w, zw (5/7). z, w 0 (1) zw = z w arg zw = arg z + arg w () z = z arg z = arg z arg w w w w de Moivrez = r(cos θ + i sin θ) n z n = r n (cos nθ + i sin nθ). A = (1 + 3 i) 10 1 + 3 i = (cos π 3 + i sin π ) de Moivre 3 A = 10 (cos 10π 3 + i sin 10π 3 ) = 104(cos 4π 3 + i sin 4π 3 ) = 51 51 3i.

I013 04-1 : June 10, 013 Version : 1.1 4 (5/7) 1. (de Moivre) z = r(cos θ + i sin θ) m z m = r m (cos mθ + i sin mθ). B = ( 3 + i) 10 3 + i = (cos 5π 6 + i sin 5π 6 ) B = 10 (cos 50π 6 + i sin 50π 6 ) = 104(cos π 3 + i sin π 3 ) = 51 + 51 3i. 3. θ R e iθ = cos θ + i sin θ. 4. θ = π e iπ = 1 e iπ + 1 = 0 e, i, π, 1, 0 5. z = r(cos θ + i sin θ) z = re iθ z 6. z, w z w 7. {z n } n=0 = {z 0, z 1, z,...} {z n } α C z n α 0 (n ) lim n z n = α z n α (n ) 8. z n = (i/) n z n 0 = (i/) n = i n 1/ n = 1/ n 0. z n 0 (n ). 9. {z n } n=0 S 0 = z 0, S 1 = z 0 + z 1, S = z 0 + z 1 + z,... {S n = z 0 + z 1 + + z n } lim n S n z 0 + z 1 + + z n + n=0 z n n 0 {z n } (series) z n

I013 04-10. z n = (1/) n 1 + 1/ + 1/ + = 11. z n = n 1 + + 3 + S n 1. ( ) i n 1.. n=0 n=1 1 n 3. n=1 n i n 4. n 1 i n n 1. 4. 13. z C e z := 1 + z + z! + z3 3! + = n=0 z n n! ( ) z (exponential function) exp(z) 14. ( ) e 100 := 1 + 100 + 10000/! + 1000000/3! + 100000000/4! + 15. z, w e z e w = e z+w ) ) (1 + z + z + (1 + w + w + = 1 + (z + w) +!! 16. (6/10) 17. ( ) z = iθ (θ R) e iθ = ) ) (1 θ! + θ4 4! + (θ θ3 3! + θ5 5! i (z + w)! + θ sin θ = θ θ3 3! + θ5 θ cos θ = 1 5!! + θ4 4! e iθ = cos θ + i sin θ 18.. e iθ = cos θ + i sin θ 1 θ

I013 04-3 6 4 1 1-1. z 0 r(cos θ + i sin θ) m z m = r m (cos mθ + i sin mθ) -1. N z N = 1 ( ) mπi z = exp N (m = 0, 1,..., N 1) N = 6-3 A. z z > 1 1/z z z w w 1/z w = u + vi 1/z = u vi0 < z < 1 z = 1 1/z -4 S. D N := ( N n=0 )( z n N n! n=0 w n n! z, w N ) N n=0 (z + w) n N 0 (Hint: D N N + 1 zi w m i i!(m i)! (m = N + 1, N +,, N) N(N + 1)/ K = max{ z, w, 1} mc ik m zi w m i i!(m i)! n! m! (K)m m! (K)N (N+1)!

I013 05-1 : June 17, 013 Version : 1.1 5 (6/10) 1. ( ) i n 1.. n=0 n=1 1 n 3. n=1 n i n 4. n 1 1. 4. 1. /( i)4. log + πi/4 1.0 0.5 1.0 0.8 0.6 0.4 i n n 10 5 10 5 5 10 1. 0.5 0.5 1.0 0.5 3. 0. 1.0 0.8 0.6 0.4 0. 0. 0.4 0. 4. 5 10.. 1 + 1/ + 1/3 + 0 (1 + 1/ + + 1/n) log(n + 1) 1 n 1 1/nα α > 1 1+1/ +1/3 + = π /6 3. z 0 + z 1 + z + z 0 + z 1 + z + 4. 4. 5.. e z = 1 + z + z! + z z = 0 1 + 0 + 0 + = 1 z 0 z n = z n /n! z n+1 = zn+1 /(n + 1)! z n z n /n = z n + 1. z < N n N z n+1 z n = z n + 1 < N N + 1.

I013 05- r = N/(N + 1) < 1 k z n+k < r k z N z 0 + z 1 + + z N+k z 0 + z 1 + + z N 1 + z N + + z N+k < z 0 + z 1 + + z N 1 + z N (1 + r + r + + r k ) 1 < z 0 + z 1 + + z N 1 + z N 1 r < z 0 + z 1 + + z N 1 + (N + 1) z N. k 6. z, w e z e w = e z+w ) ) (1 + z + z + (1 + w + w (z + w) + = 1 + (z + w) + +!!! 7. 0 z = re iθ w = r e iθ zw = re iθ r e iθ = rr e i(θ+θ ) 30 ( 30 ) (1989/04) T. (00/01) http://www.math.nagoya-u.ac.jp/~kawahira/courses/kansuron.pdf

I013 06-1 : June 4, 013 Version : 1.1 3 6 (6/17) 1. x + bx + c = 0 x = b ± b 4c. 3 x 3 + ax + bx + c = 0 x = (a, b, c ) n a, b, c R 3. (Cardano) x = A + B a 3, x = ωa + ω B a 3, x = ω A + ωb a 3.. A = 3 q + q + p 3, B = 3 q q + p 3, p = 1 ) (b a, q = 1 3 3 (c + a3 7 ab 3 ω = 1 + 3i ). = e πi/3, 4. (Bombelli) x 3 = 15x+4 x = 4 a = 0, b = 15, c = 4 p = 5, q = A = 3 + 11 = 3 + 11i, B = 3 11i x = A + B ( ± i) 3 = ± 11i A = + i, B = i x = A + B = 4 3 5. 3 α 0 z 3 = α z 6. α = 1 z 3 1 = (z 1)(z + z + 1) = 0 z = 1, ω, ω z = e 0i, e πi/3, e 4πi/3 α = re θi A = 3 re θi/3 A 3 = α z 3 = α = A 3 (z/a) 3 = 1 z/a = 1, ω, ω z = A, ωa, ω A.

I013 06-7. x 3 + ax + bx + c = 0 y = x + a/3 y 3 + 3py + q = 0 p, q y x y = u + v y y 3 + 3py + q = (u 3 + v 3 + q) + 3(uv + p)(u + v) 0 u 3 + v 3 = q uv = p u, v u 3 v 3 = p 3 u 3 v 3 t qt p 3 = 0 u α 3 v β 3 uv = p u 3 = q + q + p 3 =: α, v 3 = q q + p 3 =: β 3 (u, v) = (A, B) y = u + v (u, v) = (ωa, ω B), (ω A, ωb) 3 y = A + B, y = ωa + ω B, y = ω A + ωb 8. (A, B) q + p 3 0 α, β 3 A = 3 α, B = 3 β q + p 3 < 0 α = q + q + p 3 i = re θi, β = q q + p 3 i = re θi A = 3 re θi/3 B = 3 re θi/3 AB = p R 9. a, b, c 3 WikiPedia http://ja.wikipedia.org/wiki/ 3 a, b, c http://hooktail.sub.jp/algebra/cubicequation/ (1987/01) / (011/11) (001/11/1)

I013 07-1 4 : July 1, 013 Version : 1.1 7 (6/4) 1. 3 16C 156 1545 4. 4 x 4 + ax 3 + bx + cx + d = 0 a, b, c, d R n 3. Step x 4 + ax 3 + bx + cx + d = 0 y = x + a/4 y 4 + py + qy + r = 0 (1) p, q, r a, b, c y x 4. Step q = 0 (1) y 4 + py + r = 0 t = y q 0 y 4 + py + qy + r = ( y + p + u ) u( y q ) u u 0 u 3 u(p + u) 4ru = q q 0 u 0 3 u 5. Step u (1) {( y + p + u ) ( u y q ) }{( y + p + u u ) + ( u y q ) } = 0 u { } 0 y 6. 5 5 7. a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 a n 0, a n 1,..., a 0 C 8. a n x n + + a 1 x + a 0 = a n (x α 1 ) (x α n ) α 1,..., α n n n

I013 08-1 : July 8, 013 Version : 1.1 7/15 7/9 7/9 8 (7/1) 1. a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 a n 0, a n 1,..., a 0 C. n = 3, a 3 = 1 ( ) f(z) = z 3 + a z + a 1 z + a 0 = 0. 3. z, w C 4. R, M > 0 z w z + w z + w. z R = f(z) M > 0. R M = R 3 / z R f(z) = 0 5. f(z) = z 3 1 + ( a z + b + c ) ( z 3 1 a z z 3 z + b + c z z R a z 3 ). z 3 a z + b + c z z a 3 R + b + c a, b, c R R R 3 a R + b + c 1/ f(z) z 3 (1 1/) = z 3 / R 3 /. R R 3 M := R 3 / > 0 6. α C f(z) f(α) ( 0). z + b + c z z C α f(z) 7. f(z) = 0 f(α) = 0 f(α) > 0 8. f(0) < R 3 / R > 0 K = { z R} z f(z) 0 α K z R f(z) f(α) z R f(z) R 3 / > f(0) 0 K f(0) f(α) z C f(z) f(α)

I013 08-9. f(z) = 0 f(α) > 0 f(z) f(α) f(z) f(α) = (z α) 3 + a(z α) + b(z α) a b a, a 1, α f(z) (z α)3 a(z α) b(z α) = 1 + + + f(α) f(α) f(α) f(α) f(α) 0 w = z α A = 1/f(α)B = a/f(α)c = b/f(α) f(α + w) f(α) = 1 + Aw 3 + Bw + Cw f(α+w) f(α) < 1 w f(α) 10. C 0 Cw < 0 w w C = re iθ w = ρe i(π θ) Cw = rρe πi < rρ e πi = 1 ρ η(w) := (Aw + Bw)/C f(α + w) f(α) = 1 + Cw(1 + η(w)) η(w) w Aw + B / C w ( A w + B)/ C = ρ(ρ A + B )/ C A, B, C ρ η(w) 1/ ρ 0 < rρ < 1 w = ρe i(π θ) f(α + w) f(α) = 1 + Cw(1 + η(w)) = 1 rρ rρη(w) 1 rρ + rρη(w). 1 rρ = 1 rρ > 0 rρη(w) = rρ η(w) rρ/ f(α + w) f(α) 1 rρ + rρ/ = 1 rρ/ < 1 f(α) 11. C = 0, B 0 Bw < 0 w w 1. C = B = 0, A 0 Aw 3 < 0 w w

I013 08-3 3 7 1 1 3-1. (1) α, β 0 0, α, β α αβ + β = 0 Hint: α β ±π/3 () α, β, γ α, β, γ α + β + γ αβ βγ γα = 0 3-. ABC BCCAAB m : n A B C ABC A B C Hint: 3-1 3-3 A. f(z) = z n + a n 1 z n 1 + + a 1 z + a 0 (a n 1,..., a 0 C) n f(z) = 0 α C z f(z) z C f(z) f(α). 3-4 S. sin nβ ( cos α + n 1 ) β cos α + cos(α + β) + cos(α + β) + + cos(α + (n 1)β) = sin α + sin(α + β) + sin(α + β) + + sin(α + (n 1)β) = sin β sin nβ ( sin α + n 1 ) β Hint z n 1 + + z + 1(= 1 zn 1 z ) sin β 7 9

I013 09-1 : July 15, 013 Version : 1.1 9 (7/8) 1. a n+1 = a n + 1; a 1 = 1 x = x + 1 x = 1 a n+1 + 1 = (a n + 1); a 1 + 1 = b n := a n +1 b n+1 = b n ; b 1 = b n = n a n = b n 1 = n 1. x = x + 1 3. b n+1 = b n ; b 1 = b 0 = 1, b 1 = 1/, b = 1/4,... {b n } 0 a n = b n 1 a n 1 a n+1 = a n + 1-1 0 1 3 7 15 b n+1 = b n 0 1 4 8 16 4. 3 b n R 0, ±1, ±, x 1 x g(x) = x R g(x) = x (dynamical system) x 0 R x 0 g g(x 0 ) = x 0 g g(g(x 0 )) = x 0 g x 0 (orbit) b n b 1 = 5. a n 6. R f(x) = x + 1 a n+1 = f(a n ) a n+1 = f(f( f(a 1 ) )) f n a n+1 = f n (a 1 ) 7. p y = f(x) p f(p) f(f(p)) f(f(f(p)))... y = f(x) xy (p, p) (f(p), f(p))

I013 09- Step 0 y = f(x) y = x Step 1 (p, p) y = f(x) (p, f(p)) Step (p, f(p)) y = x (f(p), f(p)) Step 1 y = x p (graphical analysis) web diagram y f(p) y = x p y = f(x) O p f(p) x 8. g 6 4 5 4 3 1 1 4 1 1 3 4 5 x 0 = 1/4 6 x 0 = 1/4 9. g x 0 0n { g n + (x 0 > 0) (x) (x 0 < 0) g n (x 0 ) 0 x 0 = 0 g(x 0 ) = x 0 0

I013 10-1 / : July, 013 Version : 1.1 10 (7/15) 1. f(x) f(x 0 ) = x 0 f. g(x) = x x = x x = 0g 0 3. f(x) = x + 1 x + 1 = x x = 1f 1 4. a n a n+1 = f(a n ) = a n + 1 x = x + 1 a n+1 + 1 = (a n + 1) 1 5. f g x R f : x x + 1 X R g : X X X = T (x) = x + 1 x = T 1 (X) = X 1 T f T 1 (X) = T f(x 1) = T ((X 1) + 1) = X = g(x) g = T f T 1 f f R R R T T f T f f R g R g R g T f g g = T f T 1 g T = T f X = T (x) f g (conjugate) 6. f(x) = ax + b (a, b, c, d R, ad bc 0) cx + d 7. c = 0 ad bc = ad 0 d 0 f(x) = (ax + b)/d f(x) = x + 1 1 8. R 1 xy C : x + (y 1/) = 1/4 N= (0, 1) x R X= (x, 0) 1

I013 10- NX C P(x) R x P(x) C N C N C N y C N P(x) 0.8 0.6 0.4 O X x R 0. x ± P(x) N N N (point at infinity) C = (C N) {N} C = R { } C ˆR C = ˆR x + x = x + =. 0 x x = x =, x = 0, x 0 =., ±, /, 0. x = (1) x + 1 x (3) 1 x () 3x + 1 (4) x 1 x 4 (extended reals) C C

I013 11-1 : July 9, 013 Version : 1.1 11 (7/) 1 (7/9) 1. ˆR ˆR. f(x) = x + 1 x f() = + 1 = 3 0 =. f(x) = 1 + 1/x 1 /x 1 + 1/ f( ) = 1 / = 1 + 0 1 0 = 1. 3. f(x) = ax + b a, b, c, d R, ad bc 0 cx + d 1 4. f(x) = ax + b cx + d ˆR 5. f(x) = x, x + 1, x + 1 x ˆR ˆRx x + 1 x + 1 x 6. f(x) = ax + b cx + d 7. f(x) = ax + b cx + d (1) g(x) = λx (x ˆR, λ > 1) () g(x) = x + 1 (x ˆR) (3) g(z) = e iθ z (z C, z = 1, θ R) 1

I013 11-8. f(x) = 3x + g(x) = 4X x + f(x) = x x = 1, 0 X = T (x) = x + 1 T ( 1) = 0, T () = x ( ) ( X + 1 3 X+1 T f T 1 X 1 (X) = T f = T + ) X 1 X+1 X 1 + = = 4X T f T = g f g T 9. a n+1 = 3a n + a n + = f(a n); a 1 = 1 a n = f n 1 (a 1 ) g n = T f n T 1 f n = T 1 g n T ( ) ( a n = T 1 g n 1 T (a 1 ) = T 1 g n 1 a1 + 1 = T 1 4 n 1 1 + 1 ) = = 4n 1 a 1 1 4 n 1 + 1. 10. f(x) = 3x + 1 g(x) = X + 1 x + 5 f(x) = x (x 1) = 0 x = 1 X = T (x) = 4 T (1) = x 1 ( ) X 4 T f T 1 (X) = T f = = X + 1 X T f T = g g R f g T 11. f(x) = x + 1 x + 1 a ˆR a f f(a) f f (a) 4 f f 3 (a) f f 4 (a) = a

I013 11-3 1. R ˆR C Ĉ C Ĉ = C { } ˆR 13. f(x) = x + 1 x + 1 f(x) = x x + 1 = 0 x = ±i 0 z = T (x) = x i x + i T (i) = 0T ( i) = T f T 1 (z) = T f ( ) i(z + 1) = = iz 1 z f g(z) = iz x ˆR T (x) = x i x + i = x + 1 x + 1 = 1 T (ˆR) = {z C z = 1} =: T ˆR f(x) = x + 1 T T x + 1 g(z) = iz g(z) = iz = e πi/ z 90 g 4 (z) = i 4 z = z f 4 (x) = T 1 g 4 T (x) = T 1 T (x) = x f 4 T (ˆR) T z = T (x)

I013 11-4. f(x) = ax + b cx + d x = f(x) x = ax + b cx + d (ad bc 0) (a, b, c, d) = (1, 0, 0, 1) ˆR c = 0 ad bc = ad 0 d 0 1 (*) (*) ˆR 3 x = x = c 0 f(x) = a d x + b d x = f(x) dx = ax + b b d a x = ax + b cx + d cx + (d a)x b = 0 a = d x = (*) 3 Case 1 ˆR Case ˆR Case 3 ˆR 3. ( ) Case 1 3 α, β X = T (x) = (x α)/(x β) f g = T f T 1 g(x) = λx (λ C {0, 1}) α, β β = f 1 x px+q T (x) = x α g = T f T 1 Case 1 f T ˆR ˆR g = T f T 1 ˆR ˆR λ 4 λ < 1 0 X = S(X) = 1/X G = S g S 1 = (S T ) f(s T ) 1 G(X ) = X /λ Case 3 α, β a ± bi T (ˆR) = T f ˆR ˆR g = T f T 1 T T f ˆR ˆR T T T g T g(z) = λz z = 1 g(z) = 1 λz = λ = 1 λ = e iθ (θ R) 3 R 4 R g

I013 11-5 ( ) ˆR Case α α X = T (x) = 1/(x α) g = T f T 1 g(x) = X + µ (µ R {0}) X = S(X) = X/µ G = S g S 1 = (S T ) f (S T ) 1 G(X ) = X + 1 α = f x x + µ (µ R {0}) g = S f S 1