¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

Similar documents
磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

36 th IChO : - 3 ( ) , G O O D L U C K final 1

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

30

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

4 1 Ampère 4 2 Ampere 31

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co


prime number theorem

meiji_resume_1.PDF

03J_sources.key

AHPを用いた大相撲の新しい番付編成

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

Preliminary report on shock remanent magnetization measurement [1] cm 10 cm 8cm 8cm [2] [3] [1] Gattacceca 1 Superconducting

( ) ) AGD 2) 7) 1

untitled


物理化学I-第12回(13).ppt

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

総研大恒星進化概要.dvi

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

PowerPoint Presentation

i Γ


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


読めば必ずわかる 分散分析の基礎 第2版

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

Microsoft Word - 章末問題

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

untitled


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

スケーリング理論とはなにか? - --尺度を変えて見えること--

SPring-8_seminar_

untitled

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

税関分析25 年の進歩

PDF

(1) (2) (3) (4) (1) 1 1

TOP URL 1

K 1 mk(

橡H141(成人モニタリング12年まとめ)表紙・目次・

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

weak ferromagnetism observed on Shimotokuyama and Ayumikotan natural crystals behaves as pre dicted by Dzyaloshinsky and Moriya, while Wagasennin and


chap9.dvi

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

C 3 C-1 Cu 2 (OH) 3 Cl A, B A, A, A, B, B Cu 2 (OH) 3 Cl clinoatacamite S=1/2 Heisenberg Cu 2+ T N 1 =18K T N 2 =6.5K SR T N 2 T N 1 T N 1 0T 1T 2T 3T

A 99% MS-Free Presentation

master.dvi

m 3 /s

all.dvi

MY16_R8_DI_ indd

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

E-2 A, B, C A, A, B, A, C m-cresol (NEAT) Rh S m-cresol m-cresol m-cresol x x x ,Rh N N N N H H n Polyaniline emeraldine base E-3 II

untitled

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

The Physics of Atmospheres CAPTER :


2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius 53 Ea R T k 1 = χe 1 Ea RT k 2 = χe 2 Ea RT 53 A B A B

(/6) MFeO M C C Mn-Zn Ni-Zn Mn-Zn MHz Ni-Zn MHz Mn-Zn to Ni-Zn to 8 J/kg K to W/m K. 6 /K to 7 N/m mm N/m. N/m - / 6 / j_.fm

H1-H4

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合

RN201602_cs5_0122.indd

強相関電子系ペロブスカイト遷移金属酸化物による光エレクトロニクス 平成 12 年 11 月 ~ 平成 18 年 3 月 研究代表者 : 花村榮一 ( 千歳科学技術大学光科学部 教授 )

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)


1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)

( ) ,

隠し絵テスト

スライド 1

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

1 1.1 hν A(k,ε)[ k ρ(ω)] [1] A(k,ε) ε k μ f(ε) 1/[1 + exp( ε μ k B T )] A(k,ε)f(ε) ρ(ε)f(ε) A(k,ε)(1 f(ε)) ρ(ε)(1 f(ε)) A(k,ε) σ(ω) χ(q,ω) k B T ev k

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

RAA-05(201604)MRA対応製品ver6

September 9, 2002 ( ) [1] K. Hukushima and Y. Iba, cond-mat/ [2] H. Takayama and K. Hukushima, cond-mat/020

untitled

X線分析の進歩36 別刷


JAJP

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

seminar0220a.dvi

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

Transcription:

email: takahash@sci.u-hyogo.ac.jp Spring semester, 2012

Outline 1. 2 / 26

Introduction : (d ) : 4f 1970 ZrZn 2, MnSi, Ni 3 Al, Sc 3 In Stoner-Wohlfarth Moriya-Kawabata (1973) 3 / 26

Properties of Weak Itinerant Ferromagnets ps Tc Arrott (M 2 vs H/M) Curie-Weiss p s p eff 4 / 26

Heisenberg Model H = <i,j> J ij S i S j S = (S x.s y, S z ) S 2 = S(S + 1): S : M = gµb i Sz i 5 / 26

A Magnetic Moment in the Magnetic Field (Zeeman) H z = µ H = µ z H, µ = gµ B J Z = J m= J e gµbmh/kbt = e gµbjh/kbt [1 + e gµbh/kbt + + e 2gµBJH/kBT ] = e gµ BJH/k B T [1 e gµ B(2J+1)H/k B T ] 1 e gµ BJH/k B T = sinh[(2j + 1)gµ BH/2k B T ] sinh(gµ B H/2k B T ) F = k B T log Z(H, T ) 6 / 26

Curie Law of Magnetic Susceptibility m = gµ B J z = F H = gµ BJB J (x), x = gµ B JH/k B T B J (x) = {(1 + 1/2J) coth[(1 + 1/2J)x] (1/2J) coth(x/2j)}, J + 1 x, (x 1) 3J χ(t ) χ(t ) = m H = (gµ B) 2 J(J + 1) 3k B T = (µ B) 2 p 2 eff 3k B T 7 / 26

Molecular Field Approximation : H m = i J J z j H eff = H + J Jj z = H + ζj gµ B N(gµ B ) 2 M, j M = gµ B Ji z i 8 / 26 M N(gµ B) 2 J(J + 1) J(J + 1) H m = 3k B T 3k B T [N(gµ B) 2 H + ζj M]

Magnetic Properties of Localized Moment Systems Curie-Weiss χ(t ) = N(gµ B) 2 J(J + 1) J(J + 1)ζJ, T C = 3k B (T T C ) 3k B M(T ) = Ngµ B JB J (x eff ), x eff = gµ B JH eff /k B T = gµ B J(H + ζj M/[N(gµ B ) 2 ]) M(0) Nµ B p s = Ngµ B J, (T 0) p eff J(J + 1) = = 1 + 1 p s J J 9 / 26

Magnetic Free Energy F (H, T ) F (M, T ) = F (H, T ) + MH, M = H F (M, T ) = F (0, T ) + 1 2 a(t )M2 + 1 4 b(t )M4 + M H = F M = a(t )M + b(t )M3 + χ(t ) Tc C peff 10 / 26

Weak Itinerant Ferromagnets T c (K) p s p eff p eff /p s MnSi 30 0.4 2.25 5.6 Ni 3 Al 41.5 0.075 1.3 16.9 Sc 0.7575 In 0.2425 5.5 0.045 0.7 15.6 ZrZn 2 21.3 0.12 1.44 12.0 Zr 0.92 Ti 0.08 Zn 2 40 0.233 1.33 5.7 Zr 0.8 Hf 0.2 Zn 2 49.4 0.278 1.38 4.96 Table: M 0 (0) = Nµ B p s : (T = 0) 11 / 26

Rhodes-Wohlfarth Pc/Ps 14 (FeCo)Si 12 10 8 6 4 2 Pd-Fe Pd-Co (FeCo)Si Pd-Rh-Fe Sc-In Pd-Ni (FeCo)Si Pd-Ni Pd-Co Pd-Fe Pd-Fe Pd-Fe Pd-Co Ni-Cu Ni-Pd Pd-Cu CoB CrBr 3 EuO Gd MnB MnSb FeB 0 0 200 400 600 800 Tc(K) Ni Fe 1000 Figure: Rhodes-Wohlfarth 12 / 26

Arrott Plot of Magnetization Curve H = a(t )M + b(t )M 3 + = b(t )M[M 2 M 2 0 (T )] + M 2 = a(t ) b(t ) + 1 b(t ) H M, a(t ) : a(t ) (T 2 c T 2 ) b(t ) H M = b(t )[M2 M 2 0 (T )] + 13 / 26

Observed Magnetization Curves ZrZn 2 Figure: ZrZn 2 Arrott 14 / 26

Observed Magnetization Curves Sc 3 In 14 / 26 Figure: Sc 3 In Arrott

Temperature Dependence of Magnetization ZrZn 2 15 / 26 Figure: M 2 vs T 2

Temperature Dependence of b(t ) 4 b(t ) 1/F (T ) 60 F(T) (arbitraryunits) 55 50 T 2 c 45 0 500 1000 1500 2000 2500 T 2 (K 2 ) Figure: F (T ) vs T 2 for (ZrTi)Zn 2 16 / 26

Temperature Dependence of b(t ) 4 b(t ) 1/F (T ) 55 T 2 c 50 F(T)(arbitraryunits) 45 40 35 0 500 1000 1500 2000 T 2 (K 2 ) Figure: F (T ) vs T 2 for ZrZn 1.9 16 / 26

Localized vs Itinerant Magnets M/(N 0 µ B ) 1 Arrott T 3/2 T 2 χ(t ) p eff /p s 1 1 17 / 26

Stoner-Wohlfarth Theory Stoner-Wohlfarth : N N T 2 ( ) 18 / 26

Stoner-Wohlfarth Theory Model of Itinerant Electron Magnetism Hubbard Model: H = kσ = kσ t ij c iσ c jσ + U i ε k c kσ c kσ + U i n i n i M z B, n i n i M z B M z = 2µ B S z, S z = i s z i (2µB ) M = 1 n k n k = N 0 2 2 n n N = k k n k n k = N 0 n + n 19 / 26

Hartree-Fock Approximation U i n i n i = U iσ (n i n + n i n n n ) = U kσ n kσ n σ N 0 U n n H = ( ) (ε kσ µ)c N 2 kσ c kσ I 4 M2, (I = U/N 0 ) kσ ε kσ =ε k + IN/2 σ, = IM + h/2 20 / 26

Free Energy and Thermodynamic Relations F (h, µ, T ) = IM 2 + F 0, F 0 = kt kσ ln(1 + e β(ε kσ µ) ) ( ) N(h, µ, T ) = F µ = f (ε kσ ) = dερ(ε)f (ε + σ ) kσ σ M(h, µ, T ) = F h = 1 σf (ε kσ ) 2 kσ = 1 dερ(ε)[f (ε + ) f (ε )] 2 ρ(ε) ρ(ε) = k δ(ε ε k ) 21 / 26

Basis of Stoner-Wohlfarth Theory Stoner-Wohlfarth E band + E Coulomb 1. ε kσ = ε k σ, = µ B H + IM, (I = U/N) 2. : Fermi Sommerfeld dερ(ε)f (ε) = µ 3. (or M) dερ(ε) + n=1 a n (kt ) 2n ρ (2n 1) (µ) 22 / 26

Free Energy as a Function of Magnetization (Legendre ) F (M, N, T ) = F (h, µ, T ) + hm + µn µ(m, N, T ), h(m, N, T ) N, M F (M, N, T ) N F (M, N, T ) M ( ) ( ) F (h, µ, T ) µ F (h, µ, T ) h = µ + + N µ N + + M h N = µ ( F (h, µ, T ) = h + µ = h ) ( ) µ F (h, µ, T ) h + N M + + M h M 23 / 26

Stoner-Wohlfarth Free Energy Stoner-Wohlfarth F (M, T ) = F (0, 0) + 1 2 a(t )M2 + 1 4 b(t )M4 + a(t ) = 1 ρ I + π2 R 6ρ (kt )2 +, b(t ) = F 1 2ρ 3 R = ρ 2 /ρ 2 ρ /ρ +, F 1 = ρ 2 /ρ 2 ρ /3ρ : ρ ε F 24 / 26

Summary of Stoner-Wohlfarth Theory F (M, T ) = F (0, T ) + 1 2 a(t )M2 + 1 4 b(t )M4 + H = a(t )M + b(t )M 3 + a(t ) = a 0 + a 2 T 2 +, b(t ) = b 0 + b 2 T 2 + H = M[a(T ) + b(t )M 2 + ] = 0, (H = 0) M 2 0 (0) = a 0 b 0, M 2 0 (T ) M 2 0 (0) a 2 b 0 T 2 + 25 / 26

Difficulties of the Theory Magnetic susceptibility χ(t ) = 1 a(t ) 1 T 2 T 2 c χ(t ) C T T c 26 / 26