Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

Similar documents
z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d

高等学校学習指導要領

高等学校学習指導要領

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

29

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x


ψ(, v = u + v = (5.1 u = ψ, v = ψ (5.2 ψ 2 P P F ig.23 ds d d n P flow v : d/ds = (d/ds, d/ds 9 n=(d/ds, d/ds ds 2 = d 2 d v n P ψ( ψ

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

, ( ) 2 (312), 3 (402) Cardano

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,


4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

2 2 L 5 2. L L L L k.....

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Acrobat Distiller, Job 128

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

main.dvi

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

main.dvi


Chap11.dvi

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

RIMS98R2.dvi

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

i

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

KENZOU

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

body.dvi

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

KENZOU

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

°ÌÁê¿ô³ØII

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

TOP URL 1

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

1

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y


I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

mugensho.dvi

Z: Q: R: C: 3. Green Cauchy

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

- II

Gmech08.dvi


II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

Z: Q: R: C:

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

But nothing s unconditional, The Bravery R R >0 = (0, ) ( ) R >0 = (0, ) f, g R >0 f (0, R), R >

08-Note2-web

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

量子力学 問題

2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0,

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (


t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

II 2 II

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

Transcription:

Tips KENZOU 28 7 6 P no problem 2 w = f(z) z w w z w = (z z ) b b w = log (z z ) z = z 2π 2 z = z w = z /2 z = re iθ θ (z = ) 2π 4π 2 θ θ 2π 4π z r re iθ re i2π = r re i4π = r w r re iθ/2 re iπ = r re i2π = r z θ 2π w w 2 (.) z D

w = z /2 = { r e iθ/2 = w ( z D ) r e i(θ/2+π) = r e iθ/2 = w ( z D 2 ) (.) z = w = z /2 w w 2 θ [, 2π ] [, 4π ] z w arg(θ) = θ z arg(z) = θ + 2π z < arg(z) 2π z 2π < arg(z) 4π 2 z D D 2 2 2 2 z z F ig. F ig.2 F ig.3 p z = D D 2 2 z = z = D n D 2 D p z = 2 D D 2 ( D 2 2 D z 2 z w = z /n z = re iθ ( θ < 2π) z b = e b log z w w = z /n = e n log z = e n {log r+i(θ+2mπ)} = r n e i θ n m = r n e i( θ n + 2 n π) m = r n e i( θ n + 4 n π) m = 2 (.2). r n e i( θ n + 2(n ) n π) m = n. w z = n n n n n w = log z z = re iθ ( θ < 2π) w = log r + i(θ + 2nπ) n =, ±, ±2, z = θ θ ± 2π θ ± 4π 2

Fig.2 θ θ + 2π Fig.3. x b f(x)dx b (.3) 2 f(x) f(z) = (.4) z + z b f(z)dz (.5).5 z z = z z Fig.4 arg(z) < 2π (.6) Fig.5 R R z b f(z)dz = ( z b f(z) ) (.7) c.7 z b f(z)dz = I + I + I + I (.8) c F ig.4 F ig.5 R 2π l l 2 Re +i Re +i(2π ) l ) arg(z) = + z = xe i = x l 2 arg(z) = 2π z = xe I I I = I = R z b f(z)dz = z b f(z)dz = R x b f(x)dx (.9) ( xe ) R b f(xe )dx e = e b x b f(x)dx (.) R R. ( xe ) b = x b 2 f(z) xe = x R.3 I = e 2πbi I (.) 2 < b < 3

R z = Re iθ z b I = z + dz = (Re iθ ) b ir b e ibθ Re iθ + ireiθ dθ = Re iθ dθ (.2) + R lim R R b e ibθ Re iθ + = lim R brb e iθ(b ) = (b < ) z = e iθ lim b e ibθ e iθ + lim b e iθb = (b > ) b ( < b < ).8 z b f(z)dz = I + I = c R x b f(x)dx e 2πbi I e 2πbi ( z b f(z) ) (.3) f(z) = /(z + ) z =.6 z = e πi z b f(z) Res(e πi ) = ( e πi) b = e πib (.4) 3.3 eπb i e 2πb i = 2π i e πb i e πb i = π sin(πb) (.5) 2π < arg(z) arg(z) = 2π + arg(z) = I = I = R R z b f(z)dz = z b f(z)dz = R R (xe ) b f(x)dx e b I (.6) x b f(x)dx I (.7) z = = e πi ( z b e b f(z) ) = e b (e πi ) b = π sin(πb) () (2) x b dx ( < b < ) x i x b dx ( < b < ) (x + ) 2 (3) x b x a dx ( < b < a) + 3 lim (z + z )zb z + z 4

(4) x 2 x 4 + dx () z = arg(z) < 2π f(z) = /(z i) Fig.5 z b f(z)dz = I + I + I + I I I I = = (z b f(z) ) (Re iθ ) b (e iθ ) b Re iθ i ireiθ dθ, I = 2π e iθ i ieiθ dθ R I I I arg(z) + z = xe i = x I = R x b f(x)dx ( < b < ) I z arg(z) = 2π z = xe I = R R ( xe ) R b f(x)dx e = e b x b f(x)dx I = I I = e b I ( z b e b f(z) ) z = i z = e iπ/2 Res(e iπ/2 ) = (e iπ/2 ) b = e iπb/2 e b eiπb/2 = e πib e πib e iπb/2 = πi sin(πb) e iπb/2 (2) arg(z) < 2π R I I lim R lim I = I = 2π (Re iθ ) b (Re iθ + ) 2 ireiθ dθ ( e iθ ) b ( e iθ + ) 2 i eiθ dθ (Re iθ ) b (Re iθ + ) 2 ireiθ lim R brb = (b < ) (e iθ ) b (R iθ + ) 2 i eiθ lim R b+ = ( < b) ( < b < ) z = = e πi 2 4 4 f(z) = F (z)/(z a) k Res(a) = Res(e πi ) = b(e πi ) b (k )! lim d k z a dz k [(z a)k f(z)] 5

e b b(eπi ) b = πb sin(πb) (3)x a = y bx b dx = d(x b ) = d(y b/a ) = (b/a)y b/a dy x b x a + dx = a y (b/a ) + y dy = a y γ dy (γ = b/a) + y. π/ sin πb b b/a < b < < b/a < < b < a ı a sin(πb/a) (4) a = 4 b = 3 π 4 sin(3π/4) = π 2 2 2 w = z /2 θ 2 4π w z 2 w w θ [, 2π ] [, 4π ] arg(z) = θ z arg(z) = θ + 2π z F ig.6 z w = z /2 w 2. ) w = z a z a t w = t /2 Fig. z = a 6

2) w = z 2 w z =, 5 Fig.7 z z + = r e iθ, z = r 2 e iθ2 z 2 arg(z 2 ) = θ + θ 2 (2.) θ θ 2 < 2π w = r r 2 e i 2 (θ+θ2) (2.2) z Fig.8 θ θ 2 θ, θ 2 = 2π z 2 θ, θ 2 = 2π arg(z 2 ) = 4π w w w = w z z θ θ 2 2π Fig.9 arg(z 2 ) 2π w w 2 w z w w 2 w = r r 2 e i 2 (θ+θ2) (z D ) w = w 2 = r r 2 e i 2 (θ+θ2+2π) (z D 2 ) (2.3) F ig.7 z F ig.8 F ig.9 θ 2 = 2π θ = θ θ 2 z = z = Fig. D D 2 (D 2 D ) F ig. D 2 D w = (z ) /2 (z + ) /2 z = /η ( ) /2 ( ) /2 w = η = η + η ( η)/2 ( + η) /2 η = z = z = 5 z = 7

3) w = z /3 z = r e iθ w = r /3 e iθ/3 ( θ < 2π ) z = θ 6π w 3 3 θ θ 2π 4π 6π z r re iθ re i2π = r re i4π = r re i6π = r w r re iθ/3 re i2π/3 re i4π/3 re i2π = r 2 z = z = x ) 6 arg(z) = 2π D arg(z) = 2π + D 2 arg(z) = 4π D arg(z) = 4π + D 3 Fig. arg(z) = 6π D 3 arg(z) = + D 3 z w F ig. D 3 D 2 D D 3 D 2 D y D 3 D 2 D x D 3 D 2 D D 3 D 2 D 4) w = (z ) /2 (z 2) /3 z = /η w = ( ) /2 ( ) /3 η η 2 = η ( 5/6 η)/2 ( 2η) /3 z = 2 η 5/6 η = z = ) η = z = ) 6 z = 2 z = 2 3 z = 6 F ig.2 A B y A B 2 x A B (2 3 ) A B (3 2 ) 6 8

Q&A w = z /2 2 w = z /n n n θ 2 3 9 Georg Friedrich Bernhard Riemann 826.9.7-866.7.2 39 Hermann Wyle Wyle i i e iθ = cos θ+i sin θ θ = π/2 i = e iπ/2 i log i = log e log i i log i i = e i log i log i = log e i(π/2+2nπ) = i(π/2 + 2nπ),i i = e π/2 2nπ = e π/2 =.2782 i i i i i i z b z b K 2 /2 z b = e b log z (2.4) b b i w = z b N 9

z = re iθ θ ( ) w = z b = e b log z = e b log r+i(θ+2nπ) = e i2nπb b(log r+iθ) e e i2nπb b e i2nπb = w b p/q w = z p/q w q b w = e b log z log z w K 3 2.2. Ex. z /2 f(z) 7 z2 z (c) z /2 f(z)dz (2.5) z () z 2 z z 2 z /2 2 z z2 z (c) z /2 dz (2.6) z = e i = z 2 = e i 2π = x /2 dx = [ (2/3)x 3/2] = z = e iθ θ 2π Fig.4 7 P (z), Q(z) z f(z) = P (z)/q(z) Q(z)

e iθ/2 i e iθ dθ = 2 3 [ e i3θ/2 ] 2π = 4 3 arg(z) = arg(z) = 2π Ex.2 a z Ex.3: dθ a + cos θ = 2π a2 dθ z + cos θ = J = 2 8 Fig.3 (2.7) (a > ) (2.8) dθ z + 2 (z + z ) = dθ (2.9) x 2 dx (2.) + z 2 + log z + dz (2.) z 2 F ig.3 y y (π tan /2) 2 + i (π/4) + i b c a d 2 x x 2 i i (π + tan /2) (7π/4) a b x > z θ a arg(z a 2) = π arg(z a + ) = log z + = log(z + ) log(z 2) z + 2 x 2 log z + z 2 = log z + z 2 + i arg z + z 2 9 a b, b c, c d, d a (2.2). a b ( θ = ) z = x, z + = x +, z 2 = x 2 = 2 x e iπ log z + z 2 = log x + x 2 + i( π) (2.3) 2. b c (θ = 2π) z = + e iθ, z + = e iθ, z 2 = 3 + e iθ 3e iπ log z + z 2 = log e iθ 3 e iθ + i(θ π) (2.4) 8 3 9 log ln log

3. c d ( θ = 2π) z = x, z + = (x + )e, z 2 = x 2 = 2 x e iπ log z + z 2 = log x + x 2 + i(2π π) (2.5) 4. d a (θ = π π + 2π = 3π) z = 2 + e iθ, z + = 3 + e iθ 3e 2π i, z 2 = e iθ log z + z 2 = log 3 + e iθ e iθ + i(2π θ) (2.6) (2.) J = 2 + { } dx x 2 log x + + x 2 iπ + i { } dx x 2 log x + + x 2 + iπ + i 2 3π π { e iθ e iθ } dθ ( + e iθ ) 2 log + 3 e iθ + i(θ π) { e iθ dθ (2 + e iθ ) 2 log 3 + } eiθ + e iθ + i(2π θ) (2.7) lim log = 2 4 3 log 2 lim J = 2. J = z 2 + log z + z 2 dz = dx x 2 = I (2.8) + (z + i)(z i) log z + dz (2.9) z 2 z = ±i z = ±i J = (z + i)(z i) log z + z 2 dz = ( Res(i) + Res( i) + Res( ) ) ( = log i + ) i + log i 2 i 2 + (2.2) Fig.3 + i = 2e iπ/4 i = 2e i7π/4 2 + i = 5e i(π tan (/2)) 2 i = 5e i(π+tan (/2)) (2.2) 2.2 π 4 + tan 2 (2.22) Z 2 h i 2 + x 2 dx = tan x =.892547 2

3 w = /z z = z w w = /z z = w z w z = z f(z) R < z < R f(z) z = Res( ) f(z)dz (3.) 3. z = R f(z) R < z < lim zf(z) z z = /η r(> R) Res( ) = f(z)dz = Res( ) = lim zf(z) (3.2) z z =r η =/r f(/η) ( ) η 2 dη (3.3) z = r η = /r η = /r ( ) f(/η) η = < η < /R F (η) f(/η)(/η 2 ) η = f(/η)( /η 2 )dη = η =/r lim η ηf (η) ResF () = lim η ηf (η) η =/r F (η)dη = ResF () (3.4) f(z) R z ResF () = lim ηf (η) = lim η z z f(z)z2 = lim zf(z) z z =r> f(z) = z n dz = { n= ( ) c n z n (3.5) n n = Res( ) = c (3.6) 3

z = f(z) Res( ) 2 f(z) f(z) {z k } A k B f(z) A k + B = k ( f(z)dz = k A k (3.7) 3. f(z)dz = B (3.8) A k + B = ( z = B f(z) z = B = ( ) 39: f(z) = e z (3.9) z = z z = z = f(z) z e z = +! z + 2! z2 + + n! zn + (3.) z z = 4