The Physics of Atmospheres CAPTER :

Similar documents

( ) ,


m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

pdf

Note.tex 2008/09/19( )

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq


all.dvi

Part () () Γ Part ,

LLG-R8.Nisus.pdf

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Microsoft Word - 11問題表紙(選択).docx

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

II 2 II

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)


5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s


1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

液晶の物理1:連続体理論(弾性,粘性)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

I ( ) 2019

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

TOP URL 1

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2


( )

i

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

meiji_resume_1.PDF

Untitled


Gmech08.dvi


t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

IA

振動と波動

熊本県数学問題正解

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

untitled

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Gmech08.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

TOP URL 1

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

TOP URL 1

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6


1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

keisoku01.dvi

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

Microsoft Word - 章末問題

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

201711grade1ouyou.pdf

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

all.dvi

高校生の就職への数学II

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

all.dvi

TOP URL 1

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Transcription:

The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28

The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp( σρ dz) (41) 6 λ σ R 3 σ R = 32π3 3N λ 4 ρ (n 1) 2 (42) N ρ n ( (42) λ 4 σ R ) 4 % 1 % ( 41 ) 13 % ( 42 ) 4 1 2 [m 2 /Kg] 3 Appendix 4 sec41tex 23/11/28( )

The Physics of Atmospheres CAPTER 4 3 Appendix (42) 1871 Reyleigh 4 5 A1: 5 µm (a) 1 4 µm (b) 1 µm (c) 1 µm (a) (c) 5 ( ) sec41tex 23/11/28( )

The Physics of Atmospheres CAPTER 4 4 (42) 1 (A3) 2 (A8) 3 2 (= ) 4 1 = E e ikct k c t P (t) P (t) = αe e ikct (A1) α ( ) 6 E(rt) E(r t) = 1 { ( )} 1 c 2 e e 2 P (t ) r t 2 = 1 c 2 1 r = 1 c 2 1 r { ( { } )} e e 2 P (t r/c) dt 2 t 2 d(t r/c) { ( )} e e 2 P (t r/c) t 2 r = re t t = t r/c (A2) 6 α P E CO 2 Appendix sec41tex 23/11/28( )

The Physics of Atmospheres CAPTER 4 5 A2: (l) (r) ( γ 1 = π/2) (Liou 22 Figure 31 ) (A2) t 7 (A1) (A2) { ( )} E(r t) = 1 1 r c 2 α e e 2 (E e ik(r ct) ) t 2 = e ik(r ct) k 2 α {e (e E )} r (A3) (A3) (E l ) (E r ) E r //{e (e E r )} E l //{e (e E l )} e ik(r ct) E r = E r k 2 α r e ik(r ct) E l = E l k 2 α sin γ 2 r (A4a) (A4b) γ 8 sin γ 1 1 Θ( ) 7 (1993) 1 8 (A4b) γ 2 π/2 E l = sec41tex 23/11/28( )

The Physics of Atmospheres CAPTER 4 6 γ 2 = π/2 Θ (A4b) ( A2 ) e ik(r ct) E l = E l k 2 α cos Θ r (A5) I = C E 2 (C: ) I = C E 2 I = C E 2 I r = I r k 4 α 2 /r 2 (A6a) I l = I l k 4 α 2 cos 2 Θ/r 2 (A6b) I r I l Θ I = I r + I l = (I r + I l cos 2 Θ)k 4 α 2 /r 2 (A7) I r = I l = I /2 k = 2π/λ (λ : ) I = I r 2 α2 ( ) 2π 4 1 + cos 2 Θ λ 2 (A8) r f I f = Ir 2 dω Ω = F α 2 128π5 3λ 4 (A9) 9 F I 9 Z Ω Ir 2 dω = σ s = f F = α 2 128π5 3λ 4 Z 2π Z π I 2π 4 1 + cos 2 Θ r 2 α2 r 2 sin Θ dθ dφ λ 2 4 2π Z π = F α 2 2π sin Θ + ( cos Θ) cos 2 Θ dθ γ 2 = F α 2 2π 4 2π 1 2 + 2 λ 2 3 = F α 2 128π 5 3γ 4 (A1) sec41tex 23/11/28( )

The Physics of Atmospheres CAPTER 4 7 A3: : (1) (2) (3) (Liou 22 Figure 311) sec41tex 23/11/28( )

The Physics of Atmospheres CAPTER 4 8 σ s 1 1 11 12 1 ( 3 n 2 ) 1 α = 4πN n 2 + 2 { } 3 2(n 1) 4πN 3 1 = (n 1) (A11) 2πN N n n 1 13 1 1 (ρ /N ) (A1) σ s = = { } 1 2 128π 5 N (n 1) 2πN 3γ 4 ρ 32π 3 3N γ 4 (n 1) 2 ρ (A12) (42) Liou K N 22 An Introduction to Atmospheric Radiation Second Edition Academic Press 583pp 198 / http://wwwgfddennouorg 1986 II 397pp 1 (= ) 11 1? 1 12 Appendix 13 n=1+δ (δ 1) n 2 1 (n + 1)(n 1) (1 + δ + 1)(n 1) (2 + δ)(n 1) 2(n 1) = = = n 2 + 2 n 2 + 2 (1 + 2δ + δ 2 ) + 2 3 + 2δ + δ 2 3 sec41tex 23/11/28( )

The Physics of Atmospheres CAPTER 4 9 Appendix (A2) r 14 ( 1 c ( 1 c E = A t gradφ (A13a) B = rota (A13b) 2 ) t 2 φ = ρ/ε (A13c) ) A = µ i (A13d) 2 t 2 diva + 1 c 2 φ t = (A13e) E A φ B c ρ ε µ i φ(r t) = V ρ(r t r r /c) r r d 3 r (A14) 15 (A13c)(A13d) 1 i(r t r r /c) A(r t) = c 2 r r d 3 r V (A15) c 2 = 1/ε µ 16 r (r r) 17 r r r (1 r ) r (A16) r 2 14 maxwell (A13e) 15 φ(r) = Z V ρ(r ) r r d3 r ( ) ρ(r ) φ(r t) (*) r r r /c t r ρ(r t) ρ(r t r r /c) 16 (A13c)(A13d) sec41tex 23/11/28( )

The Physics of Atmospheres CAPTER 4 1 ρ(r t r r /c) ) ρ(r t r r /c) ρ (r rc r r t + cr = ρ (r t + r ) r cr ( ) ρ(r t ) + dρ(r t ) r r dt cr (A17) 18 (A14) r r r 19 φ(r t) 1 ρ(r t ) d 3 r + r r V cr 2 V = Q r + r cr 2 dp (t ) dt dρ(r t ) dt r d 3 r (A18) Q P Q (A19) Q φ(t) = r cr 2 dp (t ) dt (A19) (A15) 2 A(r t) 1 c 2 i(r t ) dv r V = 1 dp (t ) c 2 (A2) r dt 17 r r = p (r r ) 2 = p r 2 2r r + r 2 r p 1 2r r /r 2 r 1 r r 18 3 r r /cr 1 19 1 1 r r = r(1 r r /r 2 ) (A14) r 2 r 3 r 2 2 P = qr r i i = 1 dq r s dt r s r V = sr q/v = ρ r i = dq r dt V = d(q/v ) r = dρ dt dt r = d(ρr ) dt P R = V ρr dv r 2 sec41tex 23/11/28( )

The Physics of Atmospheres CAPTER 4 11 (A13a) 21 A(r t) E(r t) = { t 1 = t { 1 c 2 r gradφ(r t) dp (t ) c 2 r dt d 2 P (t ) dt 2 E(r t) = = 1 c 2 r 3 1 c 2 r 3 } + { r 2 d2 P (t ) { r dt 2 } grad ( r d2 P (t ) dt 2 { r cr 2 dp (t } ) dt )} { ( r c 2 r 3 r d2 P (t ) dt 2 ( + r r d2 P (t ) )} dt 2 )} (A21) (A23) 22 1993 2 148pp 21 gradφ(r t) r = (xe x ye y ze z ) x t = t r/c x r cr dp (t ) = ex 2 dt cr dp (t ) 2 r 2 dt cr dp (t ) + r 3 dt cr 2 d dp (t ) dx dt r ( ) r x 12 r 2 3 r 1 r x cr dp (t ) 2 dt = r cr d dp (t ) 2 dx dt r cr d2 P (t ) 2 dt 2 = xr c 2 r d2 P (t ) 3 dt 2 d(t r/c) dx = r cr d2 P (t ) x 2 dt 2 cr x y z gradφ r grad cr dp (t ) = r r d2 P (t ) 2 dt c 2 r 3 dt 2 (A22) 22 1 2 A = B = r C = P d2 (t ) A (B C) = B(A C) C(A B) (A (B C)) x = A y (B x C y B y C x ) A z (B z C x B x C z ) = B x (A C) C x (A B) = B(A C) C(A B) x dt 2 sec41tex 23/11/28( )

The Physics of Atmospheres CAPTER 4 12 Appendix (A11) Appendix (A11) Lorentz-Lorenz α = 3 4πN ( n 2 1 n 2 + 2 ) (A11) D ε D/E D E + 4πP (A24) ε ε = 1 + 4πP E/E 2 (A25) ε ε µ c = (µε) 1/2 n n 1 = c µε c = ε = 1 + 4πP E µ ε E 2 (A26) c o ε o 1 µ µ µ P (A26) N P E P = NαE (A27) A A 1 A 2 E s E o E = E o + E s (A28) E E o E A A4 E s = sec41tex 23/11/28( )

The Physics of Atmospheres CAPTER 4 13 A4: A ( (1986a) 116) E o = E s = 4πP 3 (A28) (A29) E o = E + 4πP (A3) 3 E (A27) P P = NαE o = Nα P = NαE 1 4πNα/3 ( E + 4πP ) 3 (A26) α (A11) n 2 4πNα = 1 + 1 4πNα/3 ( 3 n 2 ) 1 α = 4πN n 2 + 2 (A31) (A32) Liou K N 22 An Introduction to Atmospheric Radiation Second Edition Academic Press 583pp 1986a III ( 11 ) 1986b IV ( 11 ) sec41tex 23/11/28( )

The Physics of Atmospheres CAPTER 4 14 42 21 A81 41 ( ) (1 15km) (5 8km) ( 56 ) 25 km (2 3nm) ; 7 km k ν ν 23 24 z F S ν (z) 25 26 F S ν (z) = F S ν ( ) exp ( z ) k ν ρ z sec θdz ρ z z θ (43) F S ν ν 23 O 3 O( 3 D)+O 2 (Liou(22) eq(3214a)) 24 ( 128 ) 25 22 I ( ) ( ) 26 θ dz sec θ dz (44) sec dθ ( ) ( ) sec θ dzc dt pρ dt Zband = F S ν d ν sec42tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 15 z c p ρ dt dt = cos θ df S ν d ν (44) dz band k ν ρ z (43) (44) ( Appendix 89 ) 5 km ; 8 K day 1 ( 46) Appendix 3 : 2 3 nm (UV-B/C) 2553 nm O 3 O( 1 D) : 3 36 nm (UV-A/B) O 3 O( 3 P) : 44 118 nm 6 nm 41: ( ) ( ) (Liou(22) fig35) sec42tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 16 / ν 1 ν 2 ν 3 ν 1 ν 2 ν 3 27 42: ( (2) 58) 27 ν 1( )ν 2( ) ν 3( ) (Liou(22) fig 33) sec42tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 17 43 / ; ( 41 ) ; 28 ( ) 2 6 km ( 47) 41: McCatchey & Selby (1972) (a) (b) 12 km 1 km 32 38 cm 1 ( 31 26 µm) 68 74 cm 1 ( 15 13 µm) CO 2 42 28 : : 4 km sec43tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 18 29 ν k ν ν (Houghton and Smith 1966 ; Eisberg 1961 ) sγ k ν = π{( ν ν ) 2 + γ 2 (45) } 3 31 s = k ν d ν (46) γ = (2πtc) 1 32 t ( ) γ 33 γ = γ p/p (47) γ p STP 34 γ 1cm 1 5 km 1 kpa γ 1 4 cm 1 ρ l τ ν τ ν = exp( k ν ρl) (48) 42 W 35 W = = d ν(1 τ ν ) d ν{1 exp( k ν ρl)} (49) 29 3 (45) ( ν ν ) 31 Appndix 32 k ν ( ν = ν ) (S/πγ) ( ν ν ) = γ (S/2πγ) 1/2 33 r γ 1 t N v P 3kT RT m P P T T T N: v: R: k: m: 34 Standard Temperature and Pressure: 35 sec43tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 19 W : (1) (49) 2 (46) k ν 36 W = sρl (41) (2) ( ) k ν γ 2 (45) (49) ( 49) W = 2(sγρl) 1/2 (411) W l ( 42) ν τ i τ = 1 W i (412) ν W i i 36 (41) k ν ρl 1 exp( k ν ρl) exp( k ν ρl) = 1 k ν ρl + 1 2 (k νρl) 2 1 k νρl (46) (49) W = Z d ν{1 exp( k νρl)} Z d ν{1 (1 k νρl)} = Z Z d ν(k νρl) = ρl d νk ν = sρl sec43tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 2 42: (s=1 4 cm 1 (g cm 2 ) 1 γ =6 cm 1 ) (b)ρl (a) sec43tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 21 Appendix (45) (45) k ν T T T T f(t) = A cos 2π ν o ct (A1) A ν o c t T T ν o T/2 T/2 37 1 g( ν) = f(t) cos 2π νct dt 2π 1 T/2 = A cos 2π ν o ct cos 2π νct dt 2π T/2 2 T/2 = A cos 2π ν o ct cos 2π νct dt π = = A T/2 {cos 2π( ν o + ν)ct + cos 2π( ν o ν)ct} dt 2π { A sin π( νo + ν)ct (2π) 3/2 + sin π( ν } o ν)ct c ( ν o + ν) ( ν o ν) (A2) ν o ν ν o 1 2 g( ν) A sin π( ν o ν)ct (2π) 3/2 c ( ν o ν) (A3) g( ν) g( ν) 2 k ν {g( ν)} 2 37 4 cos A cos B = 1 (cos(a + B) + cos(a B)) 2 (A4) sec43tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 22 T T P (T ) T k ν = A {g( ν)} 2 P (T ) dt (A5) A k ν d ν = S (A6) S T P (T ) 38 P (T ) dt = 1 τ exp( T/τ) (A8) 38 T p(t ) p(t + dt ) = p(t ) + (1 p(t )) dt τ dt dt/τ T + dt T ( 1 ) T T + dt ( 2 ) T (1 p(t )) dt dt/τ p(t + dt ) = p(t ) + (1 p(t )) dt τ dp(t ) 1 p(t ) = dt τ p(t ) = 1 exp( T/τ) (A7) T T + dt P (T ) dt Z P (T ) dt = p(t + dt ) p(t ) = dp(t ) = T P (T ) = T dp(t ) = Z Z T dp(t ) dt dt = Z T τ exp( T/τ) dt = τ τ T P (T ) dt = dp(t ) = exp( T/τ) dt τ sec43tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 23 τ k ν = sγ π{( ν o ν) 2 + γ 2 } 39 (A11) 39 Z k ν = A {g( ν)} 2 P (T ) dt = A Z = = = = = A sin 2 π( ν o ν)ct ( ν o ν) 2 exp( T/τ) dt Z sin 2 π( ν ( ν o ν) 2 o ν)ct exp( T/τ) dt Z A 1 cos 2π( νo ν)ct ( ν o ν) 2 2 Z A τ 2( ν o ν) 2 exp( T/τ) dt {cos 2π( ν o ν)ct } exp( T/τ) dt A τ τ 2( ν o ν) 2 1 + ( ν o ν) 2 /γ 2 τa ( νo ν) 2 /γ 2 2( ν o ν) 2 1 + ( ν o ν) 2 /γ 2 1 = A 1 γ 2 + ( ν o ν) 2 γ 2 + ( ν o ν) 2 = τa 2 (A9) 5 Z {cos 2π( ν o ν)ct } exp( T/τ) dt = τ [{cos 2π( ν o ν)ct } exp( T/τ)] 2π( ν o ν)cτ Z {sin 2π( ν o ν)ct } exp( T/τ) dt Z {cos 2π( ν o ν)ct } exp( T/τ) dt = = τ + 2π( ν o ν)cτ 2 [{sin 2π( ν o ν)ct } exp( T/τ)] Z {2π( ν o ν)cτ} 2 {cos 2π( ν o ν)ct } exp( T/τ) dt = τ + 2π( ν o ν)cτ 2 = Z {2π( ν o ν)cτ} 2 {cos 2π( ν o ν)ct } exp( T/τ) dt τ 1 + {2π( ν o ν)cτ} 2 τ (A1) 1 + {( ν o ν)/γ} 2 (46) A ν < k ν = sec43tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 24 Z S = k ν d ν = A Z = A Z = A γ = A γ = A γ t = A γ = A π γ Z Z Z π/2 π/2 Z π/2 π/2 1 d ν γ 2 + ( ν o ν) 2 γ dx γ 2 (1 + x 2 ) dx (1 + x 2 ) d(tan θ) (1 + tan 2 θ) 1 d(tan θ) dθ (1 + tan 2 θ) dθ dθ A = Sγ π Sγ k ν = π{γ 2 + ( ν o ν) 2 } x = ( ν o ν)/γ d ν = γ dx x = tan θ sec43tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 25 44 p 1 p 2 (p 1 > p 2 ) W = s cρdz (413) path c ρ (??) c W = sc(p 1 p 2 )/g (414) ( γ ) p Curtis-Godson p = pcρ dz cρ dz (415) ( 413); 4 p = 1 2 (p 1 + p 2 ) (411) (47) (415) 1 4 sec44tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 26 41 { } sγ c 1/2 W = 2 (p 2 1 p 2 2 ) (416) 2gp (412) (416) τ = 1 1 { } 2c 1/2 (p 2 1 p 2 2 ) (s i γ i ) 1/2 (417) ν gp i i (s iγ i ) 1/2 42 (417) ( 415) 49 41 ρ (411) ρ cρ (411) l z W = 2 W = 2(sγρl) 1/2 2(sγcρl) 1/2 (411) Z z2 z 1 sγcρ dz γ = γp p (47) 1/2 = 2 s γc Z z2 z 1 1/2 ρ dz (*) z γ ρ γ (47) (415) z Z dp z2 dz = ρg (*) Z z2 W = 2 s γc ρ dz z 1 1/2 = 2 γ = γ p p = γ p 1 2 (p 1 + p 2 ) z 1 s γ p 1 2 (p 1 + p 2 ) Z p2 ρ dz = p 1 dp g = p 1 p 2 g c p1 1/2 p 2 sγ 1/2 c = 2 (p 2 1 p 2 2) g 2gp 42 (417) Σ Σ sec44tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 27 45 2 22 Schwarzschild (??) 43 exp( χ) ( 416) ( ) ν I ν I ν [W] 43: z z 1 I ν I ν1 z (z < z < z 1 ) T (z) k ν ρdzb ν (z) ( 22 ) k ν ν 43 di = Ikρ dz + Bkρ dz or di dχ = I B (23) sec45tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 28 B ν = 2 ν 2 hc 2 ν exp(hc ν/kt ) 1 (418) ν (Appendix 7 ) ( 22 ) 44 z 1 (22 ) ( z1 ) τ ν (z z 1 ) = exp k ν ρ dz (419) z dz I ν1 ( z1 ) di ν1 = k ν ρ dzb ν (z) exp k ν ρ dz z = B ν (z) dτ ν (z z 1 ) (42) (419) 45 z 1 1 I ν1 = I ν τ ν (z z 1 ) + B ν (z) dτ ν (z z 1 ) (421) τ ν (z z 1 ) z (421) ( 126 ) 46 44 B ν = 2 ν 2 hc ν exp(hc ν/kt ) 1 (418) h[js] c[m/s] 45 τ z (42) Z dτ ν(z z z1 1) = k ν ρ exp k ν ρ dz dz 46 Appendix z sec45tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 29 Appendix A1: 4 (a) (b) (c) (fig127) A1 (a) 32 K ( > B(T ) B(T ) ) H 2 O 6 7 /cm CO 2 1 /cm O 3 sec45tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 3 46 (421) I 1 = I ν τ ν (z z 1 ) d ν + 1 τ ν (z z 1 ) B ν (z) dτ ν (z z 1 ) d ν (422) (422) B ν τ ν ( 41 ) (422) 43 ; 49 419 sec46tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 31 47 (24) 47 22 (422) τ τ ( 5/3 ) 48 B πb 49 z 1 F = F ν τ ν (z z 1 ) d ν + 1 τ ν (z z 1 ) πb ν (z) dτ ν (z z 1 ) d ν (423) F 47 48 d F dt F = ρc p dz dt Z z1 τ = exp τ = exp = exp 5 3 z Z z1 zz z1 z k νρ dz 5 k ν ρ d k ν ρ dz 3 z (24) 49 π sec47tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 32 48 2 6 km 15µm ν 5 2 ( 42 ) (cooling to space) 51 (24) 52 df / dz 53 dt dt ρc p = ν dτ ν (z ) πb ν (T ) d ν (424) dz (423) 15 µm ν B ν (T ) (417) ν 54 ν ( ) 1c 1/2 τ ν (z ) d ν = ν p (s i γ i ) 1/2 (425) 3gp i (slab transmission) τ 5/3 5 ν 1 ν 2 ν 3 (liou(22) fig 33) 51 τ (z ) = 1 χ 1 τ (z ) = τ (z ) = 1 52 d F dt F = ρc p dz dt 53 (24) F = dt dt ρc p dz = F F = Z ν πb ν(t ) 5 3 k νρ dzτ (z ) d ν = Z ν dt ρc p dt Z ν dz = πb ν (T ) dτ (z ) d ν 54 z p 2 = πb ν(t ) dτ (z ) d ν (24) sec48tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 33 ; 42 (424) (12) 55 dt dt = gπb ν(t ( ) ) 1c 1/2 (s i γ i ) 1/2 (426) c p 3gp i C p = 15 Jkg 1 c = 55 1 4 (36 ppm) i (s iγ i ) 1/2 = 16 cm 1 (g cm 2 ) 1/2 (Appendix 1 ) 56 57 dt dt = 216πB ν(t ) [Ks 1 ] (427) πb ν W cm 2 (cm 1 ) 1 B ν 5 km ( 42) 46 (88 K hr 1 ) (427) 5 km πb ν (T ) 38 1 5 W cm 2 (cm 1 ) 1 28 K 4 K 5 km 55 (424) πb ν(t ) z (425) z dt dt = 1 πb ν (T ) ρc p Z ν dτ ν (z ) d ν dz Z πb ν(t ) d τ ν (z ) d ν ρc p dz = πb ν(t ) ρc p d dz ( 1c ν p ν 3gp 1/2 X i (s iγ i) 1/2 ) = πb ν(t ) dp ρc p dz = gπb ν(t ) c p 1c 3gp 1/2 X i 1c 3gp 1/2 X i (s i γ i ) 1/2 (s i γ i ) 1/2 56 dt (427) -? 57 dt dt = 98[ms 2 ] πb ν(t ) 1 55 1 4 1/2 dt 15[J kg 1 K 1 ] 3 98[ms 2 ] 113 1 5 [Nm 2 16[(1 3 kg) 1/2 ] ] = 212 πb ν(t )[Ks 1 ] sec48tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 34 49 43 3 km : Elsasser : Goody ν τ τ = exp( W i / ν) (428) W i 419 Appendix 1 sec49tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 35 41 8 13 µm 58 96 µm (fig 21 ) 59 ( ) ; ; 5 % A1: H 2 O (STP) 1 24 43 cm 1 1 cm 1 (2) 58 (3K ) 1 µm 59 sec41tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 36 411 64 6 44 61 44: (Kiehl and Trenberth 1997) 342 Wm 2 ; 49 % ( ) 6 61 3 ( ) 1/5 ( ) 1/5 thermals ( ) evapotranspiration sec411tex 23/1/21 ( )

The Physics of Atmospheres CAPTER 4 37 (fig127 ) 45 1 45: Haar and Suomi(1971)) 1962 66 (Vonder sec411tex 23/1/21 ( )