untitled

Similar documents
Conduction Mechanism at Low Temperature of 2-Dimensional Hole Gas at GaN/AlGaN Heterointerface (低温におけるGaN/AlGaN ヘテロ界面の2 次元正孔ガスの伝導機構)

untitled

untitled

untitled

PowerPoint プレゼンテーション

Electrical contact characteristics of n-type diamond with Ti, Ni, NiSi2, and Ni3P electrodes


窒化アルミニウムによる 高効率フィールドエミッションを実現 ディスプレイパネル実用レベルのフィールドエミッション特性

2004/4/16 (Power Technology) O 2 ( ) (Information Technology) ( ) Gas (4H) GaN andgap (ev) Electron mobility (cm 2 /Vs)

スライド 1

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

OPA134/2134/4134('98.03)

fma20.PDF

GaNの特長とパワーデバイス応用に向けての課題 GaNパワーデバイスの低コスト化技術 大面積 Si 上 MOCVD 結晶成長技術 Si 上大電流 AlGaN/GaNパワー HFET GaN パワーデバイスのノーマリオフ動作 伝導度変調を用いたAlGaN/GaNトランジスタ - Gate Inject

Fig, 1. Waveform of the short-circuit current peculiar to a metal. Fig. 2. Waveform of arc short-circuit current. 398 T. IEE Japan, Vol. 113-B, No. 4,

スライド 1

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

untitled

474 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No.3,.1..2* (,**0) 24 Measurement of Deterioration of Frying Oil Using Electrical Properties Yoshio

チョークコイル・リアクタ

LMC6082 Precision CMOS Dual Operational Amplifier (jp)

mbed祭りMar2016_プルアップ.key

!!

スライド 1

研究成果報告書

,,., (,, SiO 2, Si-N, ),,,,,.,.,,, (Schottky). [ ].,..,.,., 1 m µm 10., 10 5, [ ] (6N-103)..,.,. [ ] 1. (,, ) :,.,,.., (HF),.

技術研究報告第26号

PowerPoint Presentation

PowerPoint プレゼンテーション

OPA277/2277/4277 (2000.1)

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

LMC7101/101Q Tiny Low Pwr Op Amp w/Rail-to-Rail Input and Output (jp)

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

Unidirectional Measurement Current-Shunt Monitor with Dual Comparators (Rev. B

この講義のねらい ナノ 量子効果デバイス 前澤宏一 本講義は 超高速 超高周波デバイスの基盤となる化合物半導体 へテロ接合とそれを用いたデバイスに関して学ぶ 特に高電子移動度トランジスタ (HEMT) やヘテロバイポーラトランジスタ (HBT) などの超高速素子や これらを基礎とした将来デバイスであ

LM7171 高速、高出力電流、電圧帰還型オペアンプ

Triple 2:1 High-Speed Video Multiplexer (Rev. C

特-7.indd

リードタイプ円板型セラミックコンデンサ(安全規格認定品)樹脂モールド面実装タイプセラミックコンデンサ(安全規格認定品)

( ) : 1997

渡辺(2309)_渡辺(2309)

LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp)

Description

Fig. 1. Relation between magnetron anode current and anode-cathod voltage. Fig. 2. Inverter circuit for driving a magnetron. 448 T. IEE Japan, Vol. 11

単位、情報量、デジタルデータ、CPUと高速化 ~ICT用語集~

XFEL/SPring-8

PowerPoint プレゼンテーション

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

(4.15a) Hurwitz (4.15a) {a j } (s ) {a j } n n Hurwitz a n 1 a n 3 a n 5 a n a n 2 a n 4 a n 1 a n 3 H = a n a n 2. (4.16)..... a Hurwitz H i H i i H

AD8212: 高電圧の電流シャント・モニタ

LM5021 AC-DC Current Mode PWM Controller (jp)

<4D F736F F F696E74202D208FE393635F928289BB95A894BC93B191CC8CA48B8689EF5F47614E F815B835E5F88F38DFC97702E707074>

Frontier Simulation Software for Industrial Science

Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S

PowerPoint プレゼンテーション

土木学会構造工学論文集(2009.3)

MOSFET 6-2 CMOS 6-2 TTL Transistor Transistor Logic ECL Emitter Coupled Logic I2L Integrated


Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

XP231P0201TR-j.pdf

J. Jpn. Inst. Light Met. 65(6): (2015)

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

LM6172 デュアル高速低消費電力、低歪み電圧帰還アンプ

圧電型加速度センサ Piezoelectric Acceleration sensor 特長 Features 圧電素子に圧電型セラミックを用いた加速度センサは 小型堅牢 高感度で広帯域を特長としております 従って 低い周波数の振動加速度から衝突の様な高い加速度の測定まで 各分野で 幅広く使用されて

XP233P1501TR-j.pdf

JFE(和文)No.4-12_下版Gのコピー

jse2000.dvi

j9c11_avr.fm

2

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

ELECTRONIC COMPONENTS & DEVICES

MOSFET HiSIM HiSIM2 1

MAX DS.J

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

修士論文

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ


LM837 Low Noise Quad Operational Amplifier (jp)

158 A (3) X X (X-raystressmeasurement) X X 10μm (4) X X (neutron stress measurement) X (5) (magnetostriction) (magnetostriction stress measurem


MAX665S//X ABSOLUTE MAXIMUM ATINGS B4P to PKN (MAX665X) to 24 B3P to PKN (MAX665) to 8 B2P to PKN (MAX665S) to 2 BP to PKN, B2P to B

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

1 2 2 (Dielecrics) Maxwell ( ) D H

Microsoft PowerPoint 修論発表_細田.ppt

燃焼圧センサ

Keysight Technologies CMOSイメージセンサのランダム・テレグラフ・ノイズ(RTN)評価

1. Introduction SOI(Silicon-On-Insulator) Monolithic Pixel Detector ~µm) 2

pc910l0nsz_j

音響部品アクセサリ本文(AC06)PDF (Page 16)

2SK1056,2SK1057,2SK1058 データシート

Slide 1

R1LV0416Dシリーズ データシート

C: PC H19 A5 2.BUN Ohm s law

untitled

9) H. SCHMCLZRIED: Z. Elektrochem. 66 (l%1) p ) W. D. KINGERY et al.: J. Am. Chem. Soc., 42 (1959), p ) F. HUND: Z. Phys. Chem., 199 (195

年次大会原稿最終.PDF

LTC 単一5VAppleTalk トランシーバ

2SJ160,2SJ161,2SJ162 データシート

スライド 1

MAX4886 DS.J

Transcription:

213 74 AlGaN/GaN Influence of metal material on capacitance for Schottky-gated AlGaN/GaN 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1 1

AlGaN/GaN デバイス ① GaNの優れた物性値 ② AlGaN/GaN HEMT構造 ワイドバンドギャップ半導体 (3.4eV) 絶縁破壊電界が大きい (3 16 V/cm) 飽和電子速度が速い (2.7 17 cm/s) Thermal Conductivity 5 High Tem. 4 Operation 3 Electric Field High Voltage Operation GaN 2 Si Energy Gap Electron Mobility SiC 1 Yole développement, Power GaN, 212 高い電子移動度 (2cm2/Vs) Schottky metal PSP 2DEG Ec PPE PSP Al.25Ga.75N EF GaN Melting Point Electron Velocity High Frequency Operation ヘテロ界面に2DEG形成 高周波パワーデバイス への利用に期待 2

( Cu ) S G D Al.25 Ga.75 N GaN 2DEG Buffer layer Si (111)Substrate 3

AlGaN/GaN HEMT W Al S G Al.25 Ga.75 N D GaN 2DEG Buffer layer Si (111)Substrate,,W,Al 4

i-al.25 Ga.75 N(25nm)/i-GaN(1µm) on buffer/si(111) SPM and HF cleaning Oxide deposition (plasma-teos) Patterning and BHF for SiO 2 etching Mesa isolation (RIE with Cl 2 ) SPM and BHF for SiO 2 etching Oxide deposition (plasma-teos) Patterning and BHF for S/D contact opening Metal deposition (Sputtering) (5nm)/Al(6nm)/Ti(5nm) /Al /Ti Al.25 Ga.75 N (25nm) GaN(1µm) Buffer layer (1µm) Si(111) Substrate Al.25 Ga.75 N (25nm) GaN(1µm) Buffer layer (1µm) Si(111) Substrate TEOS-SiO 2 /Al /Ti 2DEG AlN (1nm) AlN (1nm) 5

Patterning and RIE with Cl 2 for S/D contact Annealing in N 2 at 95 o C for 3 sec Oxide deposition (plasma-teos) Patterning and BHF for gate opening SPM and HF cleaning Gate metal (,, W, Al) deposition (Sputtering) Gate patterning Contact opening (Buffered HF) Current [A] 6 4 2-2 -4 3sec in N 2 (5nm) /Al(6nm) /Ti(5nm) -6x1-3 -5-4 -3-2 -1 1 2 3 4 5 Voltage [V] /Al /Ti 8µm 3µm Metal 95 o C 5 o C /Al /Ti Al.25 Ga.75 N (25nm) 15µm TEOS-SiO 2 FGA (H 2 : N 2 = 3% : 97%) for 1min Measurement CV,IV,Gp/ω,Current collapse AlN (1nm) GaN(1µm) Buffer layer (1µm) Si(111) Substrate 2DEG 6

Capacitance [pf] 12 1 8 6 4 L / W = 25 / 1µm FGA 3 o C for 1 min 1kHz 1kHz 5kHz 1MHz Capacitance [pf] 12 1 8 6 4 Capacitance [pf] 12 1 8 6 4 W 2 2 2-8 -6-4 -2 Gate Voltage [V] -8-6 -4-2 Gate Voltage [V] -8-6 -4-2 Gate Voltage [V] (-4V) W 1kHz 7

Gate Leakage Current [A/cm 2 ] 1 4 1 2 1 1-2 1-4 1-6 1-8 Al W L / W = 25 / 1µm FGA 3 o C for 1 min -5-4 -3-2 -1 1 Gate Voltage [V] Drain Current [A] 1-2 1-3 1-4 1-5 1-6 1-7 1-8 V ds = 1V V ds =.5V L / W = 25 / 1µm FGA 3 o C for 1 min -7-6 -5-4 -3-2 -1 1 Gate Voltage [V] 8

(x1-8 ).6 G p /ω (S sec/cm 2 ).4.2. Conductance spectra (G p /ω) V g = -6.V -4.4V -6.V V g = -4.4V 1 2 1 3 1 4 1 5 1 6 Frequency (Hz) D it (cm -2 /ev) τ (sec) 1 12 1 11 1-3 1-4 1-5 D it and time constant (τ) -6. -5.5-5. -4.5 Gate voltage (V) (5% )D it ( ) 9

(x1-8 ) G p /ω (S sec/cm 2 ) 1.5 1..5. 1.5 1..5. Conductance spectra (G p /ω) gate gate -3.V -3.2V V g = -4.1V V g = -3.6V 1 2 1 3 1 4 1 5 1 6 Frequency (Hz) D it (cm -2 /ev) τ (sec) 1 12 1 11 1 1 1-3 1-4 1-5 D it and time constant (τ) -4.1-3.9-3.7-3.5-3.3 Gate voltage (V) -3.1 D it 1

g m (S) W/L=1/25µm V d =.5V V g (V) g m g m (AlGaN/GaN ) 11

: (Hole-like traps) : AlGaN 12

2 2 2 Drain Current [ma] Drain Current [ma] 18 16 14 12 1 18 17 16 15 14 13 V gs = 6V L / W = 25 / 1µm FGA 3 o C for 1 min 1 2 3 Drain Voltage [V] V gs = 6V V ds = 1V W 4 Drain Current [ma] 18 16 14 12 1 V gs = 6V L / W = 25 / 1µm FGA 3 o C for 1 min 1 2 3 Drain Voltage [V] Drain Current [ma] 18 16 14 12 1 4 W Reduced I d V gs = 6V L / W = 25 / 1µm FGA 3 o C for 1 min 1 2 3 4 Drain Voltage [V] ( ),W 12 1 2 3 4 5 6 Drain Bias [V] 13

, AlGaN AlGaN AlGaN/GaN (ON ) 14

12 1 Annealing for 1 min L / W = 25 / 1µm 12 1 Annealing for 1 min L / W = 25 / 1µm Capacitance [pf] 8 6 4 3 o C 4 o C 5 o C 6 o C Capacitance [pf] 8 6 4 3 o C 4 o C 5 o C 6 o C 2 at 1 khz (a) -8-6 -4-2 Gate Voltage [V] 2 at 1 khz (b) -8-6 -4-2 Gate Voltage [V]

Gate Leakage Current [A/cm 2 ] 1 4 1 3 Open : at 1 V Solid : at -5 V 1 2 1 1 1 1-1 1-2 1-3 1-4 1-5 1 2 3 4 5 6 7 Annealing Temperature [ o C] 8

g m, max [µs] 5 48 46 44 42 Annealing for 1 min V ds =.5V Reduction in g m, max 4 No FET operation with above 5 o C 38 1 2 3 4 5 6 7 Annealing Temperature [ o C] 8

2DEG at AlGaN/GaN interface Ambacher O. et al., JAP, 85, 3222, 1999. AlGaN P SP P PE Schottky metal P SP P PE 2DEG E c P SP E F GaN P SP Al.25 Ga.75 N GaN P SP : Spontaneous polarization P PE : Piezoelectric polarization 2DEG (~1 13 cm -2 ) are obtained without any doping. High electron mobility transistor (HEMT) is possible.

6 inch AlGaN/GaN substrate

I d -V d characteristics Drain Current [ma] 8 6 4 2 L / W = 25 / 1µm FGA 3 o C for 1 min V gs = V -1V -2V Drain Current [ma] 8 6 4 2 V gs = V -1V -2V Drain Current [ma] 8 6 4 2 W V gs = V -1V -2V -3V -3V -3V 2 4 6 8 Drain Voltage [V] 1 2 4 6 8 Drain Voltage [V] 1 2 4 6 8 Drain Voltage [V] 1 Fabrication and operation of HEMT with,, W Al-gated HEMT : large gate leakage current

Current collapse W. Saito (TOSHIBA), 21/6/24 G. Meneghesso et al., Microelectron. Eng, vol. 19, pp. 257 261, 213. Low Drain Voltage High Drain Voltage Trap are thought to be related to frequency dispersion. Evaluation of current collapse

Current collapse vs. nitrogen Drain Current [ma] 2 15 1 5 2 2 (a) (b) (c) V gs = 6V L / W = 25 / 1µm FGA 3 o C for 1 min Drain Current [ma] 15 1 V gs = 6V 5 L / W = 25 / 1µm FGA 3 o C for 1 min 1 2 3 4 1 2 3 4 1 Drain Voltage [V] Drain Voltage [V] Drain Current [ma] 15 1 Reduced I d (N 2 :Ar=3:7) (N 2 :Ar=2:8) (N 2 :Ar=1:9) V gs = 6V 5 L / W = 25 / 1µm FGA 3 o C for 1 min 2 3 Drain Voltage [V] 4 Current collapse are found to be correlated to nitrogen. Higher nitrogen concentration can suppress the collapse.

Current collapse & C-V characteristics Drain Current [ma] 2 18 16 14 V gs = 6V V ds = 15V (N 2 :Ar=3:7) (N 2 :Ar=2:8) (N 2 :Ar=1:9) Capacitance [pf] 12 1 8 6 4 2 FGA 3 o C for 1 min L / W = 25 / 1µm N 2 :Ar = 1:9 N 2 :Ar = 2:8 N 2 :Ar = 3:7 at 1 MHz 12 1 2 3 4 Drain Bias [V] 5 6-8 -6-4 -2 Gate Voltage [V] Current collapse depend on the nitrogen concentration. Same capacitance indicates no unintended layer.

Gate leakage and I d -V g characteristics Gate Leakage Current [A/cm 2 ] 1 2 1 1 1 1-1 1-2 1-3 1-4 1-5 1-6 N 2 :Ar = 1:9 N 2 :Ar = 2:8 N 2 :Ar = 3:7 L / W = 25 / 1µm FGA 3 o C for 1 min -6-5 -4-3 -2-1 1 Gate Voltage [V] Drain Current [A] 1-3 1-4 1-5 1-6 1-7 1-8 V ds =.5V N 2 :Ar = 1:9 N 2 :Ar = 2:8 N 2 :Ar = 3:7 L / W = 25 / 1µm FGA 3 o C for 1 min -6-5 -4-3 -2-1 Gate Voltage [V] Higher nitrogen concentration provides lower leakage. These results coincide with the use of various metals.

Conclusions Gate metal induce effects has been experimentally investigated with the use of various metals Gate metal strongly affect on the current collapse, gate leakage current and frequency dispersion in C-V characteristics. can suppress the current collapse compared with conventional metal. trogen concentration in are found to be related to the current collapse and gate leakage current. The dependence of the current collapse on nitrogen concentration indicates that the nitrogen defects are origin responsible for the traps.