$\mathcal{l}$ On the problem of reversibility for measure-valued diffusions (Kenji Handa) (Saga University) $\mathrm{f}\mathrm{l}\m

Similar documents
44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

数理解析研究所講究録 第1908巻

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

チュートリアル:ノンパラメトリックベイズ

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

$\Downarrow$ $\Downarrow$ Cahn-Hilliard (Daisuke Furihata) (Tomohiko Onda) 1 (Masatake Mori) Cahn-Hilliard Cahn-Hilliard ( ) $[1]^{1


Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

日本内科学会雑誌第101巻第12号

133 $M$ $M$ expanding horosphere $g$ $N,$ $M $ $M,$ $M $ expanding horosphere $M,$ $M $ Theorem. $\varphi$ : $Marrow M $ $M$ expanding horosphere $M $

Kullback-Leibler

$\ovalbox{\tt\small REJECT}$ SDE 1 1 SDE ;1) SDE 2) Burgers Model SDE $([4],[5],[7], [8])$ 1.1 SDE SDE (cf.[4],[5]) SDE $\{$ : $dx_

第86回日本感染症学会総会学術集会後抄録(II)


Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

基礎数学I

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

untitled

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

超幾何的黒写像

untitled

Note5.dvi

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

Centralizers of Cantor minimal systems

日本内科学会雑誌第98巻第3号

情報教育と数学の関わり

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

2 A A 3 A 2. A [2] A A A A 4 [3]

takei.dvi

(Frequecy Tabulatios)

情報理論 第5回 情報量とエントロピー

確率論と統計学の資料

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法

* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe

Anderson ( ) Anderson / 14

日本内科学会雑誌第102巻第10号

一般演題(ポスター)

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

地域総合研究第40巻第1号

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

* (Ben T. Nohara), (Akio Arimoto) Faculty of Knowledge Engineering, Tokyo City University * 1 $\cdot\cdot

189 2 $\mathrm{p}\mathrm{a}$ (perturbation analysis ) PA (Ho&Cao [5] ) 1 FD 1 ( ) / PA $\mathrm{p}\mathrm{a}$ $\mathrm{p}\mathrm{a}$ (infinite

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

プリント

2011年10月 179号 新レイアウト/001     4C

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

web04.dvi

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

Title 地球シミュレータによる地球環境シミュレーション ( 複雑流体の数理解析と数値解析 ) Author(s) 大西, 楢平 Citation 数理解析研究所講究録 (2011), 1724: Issue Date URL

ヘンリー・ブリッグスの『対数算術』と『数理精蘊』の対数部分について : 会田安明『対数表起源』との関連を含めて (数学史の研究)

4

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

(Team 2 ) (Yoichi Aoyama) Faculty of Education Shimane University (Goro Chuman) Professor Emeritus Gifu University (Naondo Jin)

A A. ω ν = ω/π E = hω. E

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri


Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

1.2 L A TEX 2ε Unicode L A TEX 2ε L A TEX 2ε Windows, Linux, Macintosh L A TEX 2ε 1.3 L A TEX 2ε L A TEX 2ε 1. L A TEX 2ε 2. L A TEX 2ε L A TEX 2ε WYS

24.15章.微分方程式

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

Predator-prey (Tsukasa Shimada) (Tetsurou Fujimagari) Abstract Galton-Watson branching process 1 $\mu$ $\mu\leq 1$ 1 $\mu>1$ $\mu

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

6 1

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

飛躍型確率微分方程式に対する漸近展開定理とコールオプション価格への応用 (ファイナンスの数理解析とその応用)

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

* * * ** ** ** * ** * ** * ** * ** * ** ** * * ** * ** *** **** * ** * * * ** * * ** *** **** * * * * * * * * * * ** * * ** * ** ix



1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3

無制約最適化問題に対する新しい3 項共役勾配法について Title( 計算科学の基盤技術としての高速アルゴリズムとその周辺 ) Author(s) 成島, 康史 ; 矢部, 博 Citation 数理解析研究所講究録 (2008), 1614: Issue Date

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

中国古代の周率(上) (数学史の研究)

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

$\text{ ^{ } }\dot{\text{ }}$ KATSUNORI ANO, NANZAN UNIVERSITY, DERA MDERA, MDERA 1, (, ERA(Earned Run Average) ),, ERA 1,,

FA - : (FA) FA [3] [4] [5] 1.1 () 25 1:

2. label \ref \figref \fgref graphicx \usepackage{graphicx [tb] [h] here [tb] \begin{figure*~\end{figure* \ref{fig:figure1 1: \begin{figure[

1 P2 P P3P4 P5P8 P9P10 P11 P12

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)


Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

Transcription:

$\mathcal{l}$ 1193 2001 30-40 30 On the problem of reversibility for measure-valued diffusions (Kenji Handa) (Saga University) $\mathrm{f}\mathrm{l}\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}$-viot 1 Wright-Fisher $E$ $E$ (type $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}$) $E$ $F_{\lrcorner}$ Borel $\lceil E$ ( 1 ) $\mathcal{m}_{1}(e)$ $\mathcal{l}$ $\mathcal{m}_{1}(e)$ - [6] $\mathcal{l}\phi(\mu)=\langle\mu, A\frac{\delta\Phi(\mu)}{\delta\mu(x)}\rangle+\langle B(\mu), \frac{\delta.\phi(\mu)}{\delta\mu(x)}\rangle+\frac{1}{2}\langle Q(.\mu), \frac{\delta^{2}\phi(\mu)}{\delta\mu(x)\delta\mu(y)}\rangle$ (1) $\langle m, f\rangle$ $\langle m, f(x)\rangle$ ( ) $m(dx)$ $A$ $D(A)$ $E$ $f(x)$ $\frac{\delta\phi(\mu)}{\delta\mu.(x)}$ Feller $\frac{\delta^{2}\phi(\mu)}{\delta\mu(x)\delta\mu(y)}$ $B(\mu)=W(\mu)+\rho R(\mu)$ ( ) $Q(\mu)$ $\rho$ $W(\mu)(dx)=$ $( \int_{e}v(x, y)\mu(dy)-\langle\mu\otimes\mu, V\rangle)\mu(dx)$, $R(\mu)(dx)=$ $\int_{e}\int_{e}\eta(x_{1}, x2)dx)\mu(d_{x_{1})(x_{2})}\mu d-\mu(dx),$ $(2)$ $Q(\mu)(dxdy)=$ $\delta_{y}(dx)\mu(dy)-\mu(dx)\mu(dy)$. $V$ $E\cross E$ Borel $\eta$ $C(E)$ $C(E^{2})$ $A$ mutation operator $V$ selection intensity o $\eta,$ $\rho$ recornbination kernel $R(\mu)$ $\eta(x_{1}, x_{2};\cdot)$ $x_{1},$ $x_{2}$ ( $n\in \mathrm{n},$ $P$ $n$, $fi,$ $\ldots,$ $f_{n}\in D(A)$ ) D well-defined Flelning-Viot ( $\text{ }\mathcal{l}$- ) Ethier-Kurtz [6] $(c, \mathcal{d})-$

$\blacksquare$ 31? $\mathcal{l}$- $A,$ $V,$ $\eta$ 1 $A$ $C(E)$ $\{T_{t}\}$ $(\mathrm{i}.\mathrm{e}.,\forall x\in E\forall f\in C(E),$ $\geq 0$ $ f _{\infty}>0 \Rightarrow\sup_{t>0}\tau_{t}f(x)>0$ ) L $A$ $\eta$. $\theta>0,$ $m\in \mathcal{m}1(e)$ $F\in C(E)$ $Af(x)+ \rho(\int_{e}f(z)\eta(x, x;dz)-f(x))=\frac{\theta}{2}(\langle m, f\rangle-f(x))$, (3) $\eta(x, y)d_{z})=\frac{1}{2}(\eta(x, x;dz)+\eta(y, y;dz))+(f(x)-f(y))(\delta_{x}(dz)-\delta_{y}(dz))$. (4) : $\Pi(d\mu)=Z^{-1}\exp[\langle\mu\otimes\mu, V\rangle+4\rho\langle\mu, F\rangle]\Pi_{\theta},m(d\mu)$ (5) $\Pi_{\theta,m}$ $\theta m$ Dirichlet $Z$ $\mathcal{m}_{1}(e)$ $\rho=0$ Li-Shiga-Yao [12] ( $E$ - ) 1 (3), (4) 1(3) mutation operator $A$ : A$f(x)= \lambda(x)(\int_{e}f(z)\phi(x, Z)m(dz)-f(x))$. $\lambda$ Borel $\phi(x, z)$ $\phi(x, z)m(d_{z)}=1(x\in E)$ 2 $E\cross E$ $E$ $\eta(x, y;dz)$ $F\in C(E)$ $\eta(x, y;d_{z})+(f(x)-f(y))(\delta x(dz)-\delta_{y}(dz))$ $E\cross E$ $E$ $\eta(x, y;\{x\})+f(x)-f(y)\geq 0$ $\forall x,$ $y\in E$.

32 $E$ $\xi(x;dz)$ $\frac{1}{2}(\xi(x;dz)+\xi(y;dz))+(f(x)-f(y))(\delta x(dz)-\delta_{y}(dz))$ E $\cross$ E $E$ $\inf_{x\in E}\xi(x, \{x\})\geq 2\sup_{x,y\in E}(F(x)-F(y))$. 3 two-locus (cf. [6]) recombination kernel (4) $E=E_{1}\mathrm{x}E_{2}$ ( $E_{1}$ $E_{2}$ 1 ) $\eta((x1, X2),$ $(y1, y_{2});dz)= \frac{1}{2}(\delta(x1,y2)(dz)+\delta_{(}x_{2})1,(yzd))$ $\eta$ $x=(x_{1}, x_{2})$ $y=(y_{1}, y_{2})$ 2 1 1 (3),(4) 2 1. (cf. [11]) 2. $D(A)$ $\langle b(\mu), f\rangle=\langle\mu, Af\rangle+\langle W(\mu), f\rangle+\rho\langle R(\mu), f\rangle$, $f\in D(A)$ (6) : $\Leftrightarrow$ 2.1 1 $E$ Borel $f$ $\mathcal{m}_{1}(e)$ $S_{f}$ $d(s_{f\mu})=\langle\mu, e^{f}\rangle^{-1}edf\mu$ 1 $\Pi\in \mathcal{m}_{1}(\mathcal{m}_{1}(e))$ L- : $\frac{d(\pi\circ Sf)}{d\Pi}(\mu)=\exp\Lambda(f, \mu)$ $\Pi_{- a.s}.$, $\forall f\in D(A)$ (7) $\Lambda(f, \mu)=2\int_{0}^{1}\langle b(s_{u}f\mu), f\rangle du$. (8)

33 ([4], [7], [15] ) Gibbs 1 [7] $\Pi$ A (8) $\Pi(d\mu)=^{z}-1-CDU(\mu)\mu$ (9) $U$ $D\mu$ $\mathcal{m}_{1}(e)$ ( ) $Z$ $\Pi$ A(ff, $\mu$) $=U(\mu)-U(sf\mu)$ - $\mathcal{l}$ $L^{2}(\Pi)$ $U$ $\text{ }-\frac{1}{2}$ $\{S_{f}\}$ $\langle b(\mu), f\rangle=-\frac{1}{2}\frac{d}{du}u(s_{uf}\mu) _{u=0}=:-\frac{1}{2}\langle\nabla U(\mu), f\rangle$ (10) $\Lambda(f, \mu)=u(\mu)-u(s_{f}\mu)=-\int_{0}^{1}\frac{d}{du}u(suf\mu)du=2\int_{0}^{1}\langle b(s_{uf\mu}), f\rangle du$ (11) (8) 1 2.2 2 $\Lambda(f+g, \mu)=\lambda(f, S_{g}\mu)+\Lambda(g, \mu)$, $\square - \mathrm{a}.\mathrm{s}.$ $\forall, f,$ $g\in D(A)$ (12) $s_{f+g}\mu=s_{f(s_{g}\mu}$), (7) $b(\mu)$ 1 (a) $U( \mu):=\sup_{f}\lambda(f, \mu)$ ( $- \frac{1}{2}$ ) (b) U Hessian (12) $f$ $U(\mu)=U(S_{g}\mu)+\Lambda(g, \mu)$ (8) (a) (b) $\nabla b(\mu)$ $\nabla b(\mu)[f, g]=\frac{d}{d?l},$ $\langle b(s_{ug}\mu), f\rangle _{u=0}$ (13)

34 $\mathrm{a}(f+g, \mu)-\mathrm{a}(f, s\mathit{9}\mu)-\mathrm{a}(g, \mu)$ $=- \int_{0}^{1}dv\int_{0}^{v}du(\nabla b(s_{uf\mu}+vg)[f, g]-\nabla b(s_{uf+g}v\mu)[g, f])$. $f,$ $g$ $\nabla b(\mu)$ $\nabla b(\mu)[f, g]=\nabla b(\mu)[g, f]$, $\forall f,$ $g\in D(A)$ (14) (a) $b( \mu)=-\frac{1}{2}\nabla U(\mu)$ Hessian $\nabla^{2}u(\mu)$ (3),(4) $V$ $V$ $W(\mu)$ (i.e., $\{S_{f}\}$ ) $\overline{v}(\mu)=\langle\mu\otimes\mu, V\rangle$ $W( \mu)=\frac{1}{2}\nabla\overline{v}(\mu)$. (15) (12),(14) $W(\mu)$ (15) $W\equiv 0$ ( ) 1 (15) 1 $W\equiv 0$ (1) $L_{0}$ $\Pi\in \mathcal{m}_{1}(\mathcal{m}_{1}(e))$ $\mathcal{l}$- $\exp[-\overline{v}(\mu)]\square (d\mu)/normali_{zat}ion$ L0- $\Pi_{0}\in \mathcal{m}_{1}(\mathcal{m}_{1}(e))$ L0- $\exp[\overline{v}(\mu)]\pi_{0}(d\mu)/norma\iota i_{z}ation$ L- $W\equiv 0$ 2.3 $\mathrm{r}_{\nabla b(\mu}$ ) - (3), (4) $f,$ $g$ $\mu$ (14) $0$ $\mu$ $\Pi$ $\Pi$ $\{T_{t}\}$ 2 $\{T_{t}\}$ $\Pi\in \mathcal{m}_{1}(\mathcal{m}_{1}(e))$ (7), (8) $\Pi(supp\mu=E)=1$. \mu (14)? $\Pi$ (14) 1 $\nabla b(s_{h\mu})[f, g]=\nabla b(s_{h}\mu)[g, f]$, $\forall f,$ $g\in D(A),$ $h\in B(E)$ (16)

$1\text{ }$ 35 $B(E)$ $E$ Borel 2 $\Pi$ 1 $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\mu=e$ $x\in E$ $B(E)$ {h $\{S_{h_{n}}\mu\}$ $\delta_{x}$ (16) (i.e., $\rho=0$ ) Li-Shiga-Yao [12] (14) $\langle\mu, Af\cdot g\rangle-\langle\mu, Af\rangle\langle\mu, g\rangle=\langle\mu)f\cdot Ag\rangle-\langle\mu, f\rangle\langle\mu, Ag\rangle$ Markov $A$ (3) $\mu$ $\lambda$ $(\mu, \text{ }\in \mathcal{m}_{1}(e),$ \mbox{\boldmath $\lambda$}\mu +(1--\mbox{\boldmath $\lambda$})\nu $\lambda\in[0,1])$ 2 $\lambda^{2}$ $\langle$ \mu --l,. $Af\rangle$ $\langle\mu-l\text{ }, g\rangle=\langle\mu-l\text{ }, f\rangle\langle\mu-\mathfrak{l}\text{ }, Ag\rangle$ $\delta_{x},$ $\delta_{y}$ $\mu,$ $(Af(X)-Af(y))(g(X)-g(y))=(f(x)-f(y))(Ag(x)-Ag(y))$. A$f(x)-Af(y)=\alpha(f(x)-f(y))$ $f,$ $x,$ $y$ $\alpha\neq 0$ $A$ $(m.\text{ }$ ) $y$ A $f(x)=\alpha(f(x)-\langle m, f\rangle)$ $\alpha<0$ $\theta=-2\alpha>0$ (3) 2.4 (3), (4) 1 $ f-(x)= \int_{e}f(z)\eta(x, x;dz)-f(x)$ (3), (4) 2 $\int_{0}^{1}\langle s_{uf\mu},$ ( $A+\rho^{\text{ })f\rangle\rho}du+4(\langle S_{f\mu}, F\rangle-\langle\mu, F\rangle)$ (17) ( $W\equiv 0$ ) 1 $\overline{\square }(d\mu):=e^{-4\rho\langle\mu,\rangle_{\pi}}f(d\mu)/\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{i}_{\mathrm{z}}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ (18)

$\theta$, 36 mutation operator $A+\rho-\cup-,$ $W\equiv 0,$ $\rho=0$ Fleming-Viot $\overline{\pi}\text{ }\Pi_{\theta,m}$ A+\rho (3) $[6]_{\circ}$ $\overline{\pi}=\pi_{\theta,m}$, (5) $\overline{\pi}$ (17) (3) 2 $\int_{0}^{1}\langle s_{uf\mu}, (A+\rho_{-}^{-}-)f\rangle du=\theta(\langle m, f\rangle-\log\langle\mu, e^{f}\rangle)$ (19) \theta,m [14] (19) [10] (19) 22 (a) $U$ $U( \mu)=\theta\sup(\langle m, f\rangle f-\log\langle\mu, e\rangle f)=\theta H(m \mu)$ $H(m \mu)$ $\mu$ $m$ (9) $\Pi_{\theta,m}$ $\Pi(d\mu)=Z^{-}1-e\theta H(m \mu)d\mu$ (20) $H(m \mu)<\infty$ $\theta H(m \mu)-\theta H(m s_{f}\mu)=\theta(\langle m, f\rangle-\log\langle\mu, e^{f}\rangle)$ (21) (19) $\Pi_{\theta,m}$ (20) ( ) [10] ( Dirichlet 3 ) Wiener Shilder $\Pi_{\theta,m}$ [3] : $\Pi_{\theta,m}(\{\mu\})\approx\exp(-\theta H(m \mu))$ $(\thetaarrow\infty)$ (22) $\{\Pi_{\theta,m}\}_{\theta>}0$ \theta \rightarrow \infty rate function $I(\mu):=H(m \mu)$ (20) $U(\mu)$ $\nabla U(\mu)$ $U(\mu)=\theta H(m \mu)$ \Pi \theta,m $\mathrm{a}.\mathrm{s}$ $\mu$. $m$ $\Pi_{\theta,m}(U(\mu)=\infty)=1$ (21) $\nabla U(\mu)$ $\langle\nabla U(\mu), f\rangle=-\theta(\langle m, f\rangle-\langle\mu, f\rangle)$

37 (3) mutation operator Fleming-Viot 1. 2.1, 22 $\circ$ superprocess (cf. e.g. [2]) stepping stone model (e.g. [8]) $\text{ }[13],$ $[1]$ 2. (3) (4) $\mathcal{l}$-? reference measure? ( $\nabla b(\mu)$ ) 3. ( ) $Lf(x)= \frac{1}{2}\sum_{i,j=1}a(nijx)\frac{\partial^{2}f}{\partial x_{i}\partial X_{j}}(_{X})+\sum_{i=1}nbi(X)\frac{\partial f}{\partial x_{i}}(x)$ (23) $\lceil ( L$- ) ( ) $\phi$ $\phi$ $\sum_{i=1}^{n}\frac{\partial}{\partial x_{i}}\{\frac{1}{2}\sum_{j=1}n\frac{\partial}{\partial x_{j}}(a^{ij}\emptyset)-bi\}=0$ (24) $\frac{1}{2}\sum_{j=1}^{n}\frac{\partial}{\partial x_{j}}(a\emptyset ij)-bi=0$ $(i$. $=1, \ldots, n)$ (25) detaled balance condition ( ) (25) - ( ) $L$

$\triangle$ $\overline{b}^{i}$ 38 [11] (Chap. V, \S 4) $(g_{ij}):=(a^{ij})-1$ Riemannian metric : $L= \frac{1}{2}\triangle+\overline{b}$ (26) $G=\det(gij),$ $(g^{ij}):=(g_{ij})^{-1}=(a^{ij}),$ $\overline{b}=\sigma_{i}\overline{b}\frac{\partial}{\partial x_{i}}i$ $=$ $\frac{1}{\sqrt{g}}\sum_{i,j}\frac{\partial}{\partial x_{i}}(\sqrt{g}g^{i}\dot{j}\frac{\partial}{\partial x_{j}})$ (27) $=$ $b^{i}- \frac{1}{2}\sum_{j}\frac{\partial g^{ij}}{\partial x_{j}}-\frac{1}{2}\sum jg^{ij}\frac{\partial\log\sqrt{g}}{\partial x_{j}}$ (28) (28) log $\sqrt$ $L$ G $\overline{b}$ $\exists V$ $\mathrm{s}.\mathrm{t}$ $b^{i}-. \frac{1}{2}\sum\frac{\partial g^{ij}}{\partial x_{j}}j=-\frac{1}{2}\sum_{j}\mathit{9}^{i_{\dot{j}}}$ $\frac{\partial V}{\partial x_{j}}$ $(i, =1, \ldots, n)$ (29) (25) \mbox{\boldmath $\phi$} $=\exp(-v)$ $-$ : Wright-Fisher (cf. e.g. [5], Chap. 10) $K$ 2 $E$ $K$ Fleming-Viot $X_{K}:=\{(x_{1}, \ldots, x_{k}-1) x_{1}\geq 0, \ldots x_{k-1})\geq 0, x_{k}:=1-x_{1} --X_{K-1}\geq 0\}$ ( $n=k-1$ ) $a^{ij}(x)=xi(\delta ij-x_{j})$ $b^{i}(x)$ $b^{i}(x)= \frac{\theta}{2}(m_{i}-x_{i})$ (30) $\theta>0$, $m_{1}>0,$ $\ldots,$ $m_{k-1}>0$, $m_{k}:=1-m_{1}$. $..-m_{k-1}>0$ $X_{K}$ [3] $G(x)-1=\det(a^{i}(jX))=x_{1}\cdots x_{k}$ $(g_{ij})=(a^{ij})^{-1}$ $\sum_{j=1}^{k-1}\frac{\partial g^{ij}}{\partial x_{j}}=1-kx_{i}=-\sum_{j=1}^{1}g\frac{\partial\log G}{\partial x_{j}}k-ij$ $(i$. $=1, \ldots, K-1)$

39 $\phi=g\exp(-u)$ (i.e., $V=U-\log c$) (29) $b^{i}=- \frac{1}{2}\sum_{1j=}^{1}g\frac{\partial U}{\partial x_{j}}k-ij$ $(i=1, \ldots, K-1)$ (31) (30) $b^{i}$ (31) $U$ $U(x)= \theta\sum_{i=1}^{k}m_{i}\log\frac{m_{i}}{x_{i}}+\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$. (32) $\phi d_{x_{1}}\cdots dx_{k1}-$ $G\exp(-U)d_{X_{1}}\cdots dx_{k1}-=$ const. $( \prod_{i=1}kx_{i}^{\theta m})i-1\ldots-1dxx1kx1\ldots dx_{k1}-$ (33) Dirichlet (33) $x_{1k}^{-1}\ldots x^{-1}dx1\ldots d_{x}k-1$ $\Sigma_{K}^{+}:=\{(x_{1}, \ldots, x_{k}) x_{1}>0, \ldots ; x_{k}>0, x_{1}+\cdots+x_{k}=1\}$ $D_{K}(dx_{1}\cdots dxk):=x_{1}^{-1}\cdots X_{K}^{-}1\delta 1-x_{1}-...-X_{K-1}(d_{X}K)dx_{1}\cdots dx_{k1}-$ Fleming-Viot $\{S_{f}\}$ $S_{f}x=( \frac{e^{f_{1}}x_{1}}{\sigma_{j=1}^{k}e^{f_{jx}}j},$ $\cdots,$ $\frac{e^{f_{k}}x_{k}}{\sigma_{j=1}^{k}e^{f_{j}}xj})$, $f\in \mathrm{r}^{k},$ $x=(x_{1}, \ldots, x_{k})\in\sigma_{k}^{+}$ $\Sigma_{K}^{+}$ 2 $x=(x_{i}),$ $y=(y_{i})$ $x \cdot y=(\frac{x_{1}y_{1}}{\sigma_{j1}^{k}=x_{j}y_{j} }\cdots,$ $\frac{x_{k}y_{k}}{\sigma_{j=1}^{k}x_{j}y_{j}})$ Haar $D_{K}$ Dirichlet (20) [1] Cox, J. T. and Greven, A. (1994) Ergodic theorems for infinite systems of interacting diffusions, Ann. Probab., 22, 833-853 [2] Dawson, D. (1993) Measure-valued Markov processes, in \ Ecole $d F\acute{j}t\acute{e}$ de $P_{\Gamma obb}ai\iota it\acute{e}s$ de Saint Flour, Lecture Notes in Alath. 1541, pp. 1-260, Springer-Verlag, Berlin

$\mathrm{r}^{\mathrm{z}^{d}}$. 40 [3] Dawson, D. and Feng S. (1998) Large deviations for the Fleming-Viot process with neutral mutation and selection. Stoch. Proc. Appl. 77, 207-232. [4] Doss, H. and Royer, G. (1978) Processus de diffusion associe aux mesures de Gibbs sur, Z. Wahrsch. Verw. Gebiete 46, 107-124 [5] Ethier, S. N. and Kurtz, T. G. (1986) Markov Processes: Characterization and $C_{on}-$ vergence, Wiley, New York [6] Ethier, S. N. and Kurtz, T. G. (1993) Fleming-Viot processes in population genetics, SIAM J. Contr. Opt. 31, 345-386 [7] Funaki, T. (1991) The reversible measures of multi-dimensional Ginzburg-Landau type continuum model, Osaka J. Math. 28, 463-494 [8] Handa, K. (1990) A measure-valued diffusion process describing the stepping stone model with infinitely many alleles, Stochastic Process. Appl. 36, 269-296 [9] Handa, K. (2001) Quasi-invariance and reversibility in the Fleming-Viot process, submitted [10] Handa, K. : Quasi-invariant measures and their characterization by conditional probabilities, in preparation [11] Ikeda, N. and Watanabe S. (1981) Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, $\mathrm{a}\mathrm{m}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{d}\mathrm{a}\mathrm{m}/\mathrm{t}\mathrm{o}\mathrm{k}\mathrm{y}\mathrm{o}$ [12] Li, Z., Shiga, T. and Yao, L. (1999) A reversibility problem for Fleming-Viot processes, Elect. Comm. in Probab. 4, 71-82 [13] Shiga, T. (1992) Ergodic theorems and exponential decay of sample paths for certain interacting diffusion systems, Osaka J. Math., 29, 789-807 [14] Tsilevich, N., Vershik, A. and Yor, M. (2000) Distinguished properties of the gamma process, and related topics, preprint [15] Zhu, M. (1996) The reversible measure of a conservative system with finite range interactions, in Nonlinear Stochastic PDE s: Hydrodynamic Limit and Burgers $\mathrm{e}\mathrm{d}\mathrm{s}$ Turbulence, T. Funaki and W. A. Woyczynski, IMA volumes in Mathematics and its Applications, Vol. 77, Springer-Verlag, pp. 147-156, New York