esba.dvi



Similar documents
Note5.dvi


Ł\”ƒ-2005


24.15章.微分方程式

高等学校学習指導要領

高等学校学習指導要領

第85 回日本感染症学会総会学術集会後抄録(I)

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

A B C D E F G H J K L M 1A : 45 1A : 00 1A : 15 1A : 30 1A : 45 1A : 00 1B1030 1B1045 1C1030

第52回日本生殖医学会総会・学術講演会


第101回 日本美容外科学会誌/nbgkp‐01(大扉)

27巻3号/FUJSYU03‐107(プログラム)

パーキンソン病治療ガイドライン2002

tnbp59-20_Web:P1/ky108679509610002943

本文27/A(CD-ROM

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p


0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

Part. 4. () 4.. () Part ,

i I

テクノ東京21-2005年5月号

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

日本皮膚科学会雑誌第122巻第3号

46 Y Y Y Y 3.1 R Y Figures mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y Y Figure 5-


改訂版 :基本的な文字化の原則(Basic Transcription System for Japanese: BTSJ)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

eto-vol2.prepri.dvi

本文/020:デジタルデータ P78‐97

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

untitled

eto-vol1.dvi

Microsoft Word - 触ってみよう、Maximaに2.doc

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

54_2-05-地方会.indd

A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {


REALV5_A4…p_Ł\1_4A_OCF

untitled

「都市から地方への人材誘致・移住促進に関する調査」

<91498EE88CA D815B2E786C73>

〔 大 会 役 員 〕

橡本体資料+参考条文.PDF

Lecture on


A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π



受賞講演要旨2012cs3

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

b3e2003.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r 1, r 2 ) Schrödinger } { h2 2m ( )+V (r 1, r 2 ) ϕ(r 1, r 2

untitled

Gmech08.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

dプログラム_1

dvipsj.4131.dvi

Untitled

EndoPaper.pdf

" " " " "!!

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

応力とひずみ.ppt

. p.1/14

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

第86回日本感染症学会総会学術集会後抄録(II)

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)


: , 2.0, 3.0, 2.0, (%) ( 2.

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

II 2 II

Microsoft Word - fukui浅田長岡.doc

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

A A. ω ν = ω/π E = hω. E

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU SPring

; 200 µs 0 1 ms 4 exponential 80 km m/s 10 km 1 ms 5 E k N = e z/h n 6 ; N, H n :, z: ( ) t ρ + (σe) = 0 E σ 1 σ σ σ e e (1/H e+1/h n )


90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

高知工科大学電子 光システム工学科

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

h = h/2π 3 V (x) E ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 関 数 値

Gmech08.dvi

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

Chap11.dvi

Part () () Γ Part ,


x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

PDF用表1~4/表1★

-34-

A. Fresnel) (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) (G. Galilei)


Transcription:

Ehrenberg-Siday-Bohm-Aharonov 1. Aharonov Bohm 1) 0 A 0 A A = 0 Z ϕ = e A(r) dr C R C e I ϕ 1 ϕ 2 = e A dr = eφ H Φ Φ 1

Aharonov-Bohm Aharonov Bohm 10 Ehrenberg Siday 2) Ehrenberg-Siday-Bohm-Aharonov ESBA( 3). Schrödinger Φ Aharonov Bohm Φ 2π/e Φ 2π/e R B Φ = πr 2 B z z (r, θ, z) x = r cos θ y = r sin θ A = rot B A θ, r, z ( Φ r/(2πr 2 ) (r < R) A θ = Φ/(2πr) (r > R) A r = A z = 0 (1) A θ = A x sin θ + A y cos θ A r = A x cos θ + A y sin θ Schrödinger H = 1 2µ ( + iea)2 (2) µ h = c = 1 Schrödinger H = E E (1) " 1 µ # 2 1 @ 2µ r 2 @θ + iβ + @2 @r + 1 @ 2 r @r + @2 = E (3) @z 2 β = eφ 2π 2

β A θ = Φ/(2πr) = β/(er) (3) (r = R) = 0 Schrödinger A A + χ, exp( ieχ) (4) χ (4) χ = (β/e)θ = e iβθ (5) (3) β 1 2µ 2 = E (6) r > R χ = (β/e)θ z z (5) (6) Schrödinger ESBA θ r (θ + 2π) = (θ) (5) (θ + 2π) = e 2πiβ (θ) (7) z β e 2πiβ θ θ 0 θ < 2π (7) x θ = 0 lim θ 2π (θ) = e 2πiβ lim θ 0 (θ), lim θ 2π @ @θ (θ) = e 2πiβ lim θ 0 @ @θ (θ) (8) x e 2πiβ x 0 θ < 2π 3

θ r (r = R) = 0 θ (7) (8) (6) β β Φ ESBA (7) β 3. Φ Φ θ Faraday θ θ z E θ B z ee θ + ev r B z θ v r r z ρ(t) L dl dt = ρee θ(ρ) + ρev r B z (ρ) (9) z Stokes rote = @B @t ρee θ (ρ) = e 2π I r=ρ E dr = e 2π Z Z r ρ rote ds = e Z Z @B ds (10) 2π r ρ @t H r=ρ ρ RR r ρ ρ z r φ(r) d dt φ(ρ) = @ @t φ(ρ) + v @ r φ(ρ) (11) @ρ ρ φ(ρ) 4

v r = dρ/dt Z Z @ @t φ(ρ) = r ρ @B @t ds, @ @ρ φ(ρ) = 2πρB z(ρ) (12) (9) (12) dl dt = e d φ(ρ) (13) 2π dt t 0 t 1 r < R Φ t 1 Φ t 0 L 0 (13) t 0 t > t 1 L = L 0 + (e/2π)φ(ρ) ρ t t > t 1 φ(ρ) = φ(r) = Φ β L = L 0 + β (14) Φ β β L 0 r p = i p canonical momentum p + ea mechanical momentum r p r (p + ea) x-y z θ i@/@θ i@/@θ + era θ r > R (θ + 2π) = (θ) (θ + 2π) = (θ) Schrödinger (θ + 2π) = (θ) (5) (θ + 2π) = (θ) (θ + 2π) = (θ) 5

Schrödinger i(@/@t) = H H (2) L = i@/@θ + era θ Schrödinger d D, i @ E dt @θ + era θ = h, era D h θ i +, H, @ i E @θ + iera θ E = (@/@t)a A θ E θ (e/2)(v r rb z + rb z v r ) B z = @A θ @r + A θ r 1 @A r r @θ, v r = i µ µ @ @r + 1 2r + iea r d dt h, L i = eh, re θ i + e 2 h, (v rrb z + rb z v r ) i (15) hφ, L i (15) v r rb z (9) t 0 t 1 Φ t 0 t 1 A θ = Φ/(2πr) A r = A z = 0 θ t 0 θ e imθ m m m A θ H θ [H, @/@θ] = 0 m r θ e imθ t 1 Φ m A θ = Φ/(2πr) m + era θ = m + β Φ β θ Φ t > t 1 6

t > t 1 +β β t > t 1 β 2π/e A θ = Φ/(2πr) β (5) (θ + 2π) = (θ) m + β θ e i(m+β)θ β (7) β 4. Schrödinger x-y z Bessel J N β k,m (r, θ) = N m+β (kr)j m+β (kr) J m+β (kr)n m+β (kr) e imθ (16) m k Schrödinger (3) β k,m (R, θ) = 0 E = k2 /(2µ) 7

m A θ = β/(er) m + β Aharonov Bohm t 0 t 0 t 1 Φ t 1 Φ t 0 0 0 0 k,m 0 = Z 1 0 dk X m C k,m 0 k,m (C k,m (17) t 0 t 1 t 1 1 1 = Z 1 0 dk X m D k,m β k,m (D k,m (18) (17) (18) 0 1 1 β k,m 0 k,m t 0 t 1 A θ = β/(er) t 0 t 1 +β (5) t 1 1 = Z 1 0 dk X m D k,m β k,m, β k,m = β k,m eiβθ (19) β k,m θ ei(m+β)θ m + β β k,m 1 1 (θ+2π) = e 2πiβ 1 (θ) θ 0 t 1 Schrödinger i@ /@t = (1/2µ) 2 β k,m k2 /(2µ) t > t 1 (19) 1 β k,m β k,m exp[ ik2 (t t 1 )/(2µ)] = Z 1 0 dk X m D k,m β k,m exp[ ik2 (t t 1 )/(2µ)] (20) 8

ESBA t 1 1 1 t 1 1 t 0 t 1 t 1 1 +β β 1 1 (θ + 2π) = e 2πiβ 1 (θ) t 0 t 1 θ 0 θ < 2π 1 θ x (8) r r = R 1 θ = π x v 1 p 1 = v 1 /µ x v 1 θ σ(θ) p 1 C exp(ip 1 x) C exp(ip 1 x) x β β k,m x (1) p 1 C exp(ip 1 x iβθ) β (19) D k,m 1 v 1 (20) v 1 β x β β β ESBA 9

(7) β 1 Φ Φ + 2jπ/e j Φ 2π/e (16) β+j j k,m = β β+j k,m+j { k,m } { β k,m } +j + β +β β 6. ESBA Φ t 1 (16) Φ ESBA 10

7. Φ θ +β ESBA β Φ β (14) L 0 eφ/(2π) (7) ESBA ESBA m 1, m 2, m 3,... m i m i m j m i +α 0 α < 1 α i α α α α α β = eφ/2π ESBA 11

1) Y. Aharonov and D. Bohm, Phys. Rev. 115 (1959), 485. 2) W. Ehrenberg and R. E. Siday, Proc. Roy. Soc. London, B62 (1949), 8. 3) John Bell H.M.) J.B. Ehrenberg Siday Ehrenberg-Siday- Bohm-Aharonov ESBA 4). Tonomura et al., Phys. Rev. Lett. 56 (1986), 792. 12