Microsoft Word - 0目次ver1.docx

Similar documents
Solid–in–Oil化技術を利用したアスコルビン酸誘導体の経皮デリバリーシステム

< > Introduction to Basic Physical Chemistry 1,2 2 [ advanced [ [ [ [ [ KULASIS

< > Introduction to Basic Physical Chemistry 1,2 2 [ advanced [ [ [ [ [ KULASIS

研究成果報告書

CRA3689A

報告書 H22-2A-09

CHEMOTHERAPY Fig. 1 Chemical structure of TE-031

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

Fig. 1 Chemical structure of DL-8280

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

ROWCatPathology_J.book

36 th IChO : - 3 ( ) , G O O D L U C K final 1

H7

2009年度 東京薬科大学 薬学部 授業計画

日本消化器外科学会雑誌第29巻第9号

untitled

1

03J_sources.key

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

A, B 2 B 5 A C A ADP A G ADP ADP G camp B GM A B CTB Tochikubo et al., 1998 CTB CTB Dertzbaugh & Elson, 1993a; Yu et al., 1994; Shi et al., 1995 CTB C

untitled


yakugaku-kot.ppt

CHEMOTHERAPY APR Fig. 1 Chemical structure of cefotetan (CTT, YM09330)

Table 1. St-VAc blockcopolymers Table 2. Stability of dispersion of blockcopolymers in unsaturated polyester


光学

H1-H4


9.プレゼン資料(小泉)R1

t 492 t mg/l 30 mg/l BOD 95 OH = cm 3 / sec 25 8 OH /cm 3 12 = ph ph

X線分析の進歩36 別刷

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

Corning w In vivo w w w in vivo Create a More Natural Environment for Your Cells Costar ready-to-use 25 Falcon Corning BioCoat Falcon Corning BioCoat

untitled

PALL NEWS vol.126 November 2017

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

2009年133巻3号3月号.indb

) BPA ECN EPICLON N-600 Fig.2 Fig Fig.4 DCPD EPICLON HP-7200 ECN Fig.5 DCPD ECN DCPD 6-28) Table 1 BPA Fig.4 Chemical str

RAA-05(201604)MRA対応製品ver6


光学


研究成果報告書(基金分)

Fig. 1 Structure of a Sebaceous Follicle (Ref.1).

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

δδ 1 2 δ δ δ δ μ H 2.1 C 2.5 N 3.0 O 3.5 Cl 3.0 S μ

J. Jpn. Inst. Light Met. 65(6): (2015)

渡辺(2309)_渡辺(2309)

(Pantothenic acid, C 9 H 17 NO 5, MW: CH 3 OH HOCH 2 C CHCONHCH 2 CH 2 COOH CH 3 (Calcium pantothenate, C 18 H 32 CaN 2 O 10, MW: ) CH 3

第1章 溶接法および機器

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

474 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No.3,.1..2* (,**0) 24 Measurement of Deterioration of Frying Oil Using Electrical Properties Yoshio

HILIC UPLC/MS UPLC LC/ MS LC/MS HPLC 2-4 HPLC 4,5 HILIC / HILIC 80 ACQUITY UPLC Xevo QTof MS ACQUITY BEH HILIC HILIC TOF ESI 1.7 µm BEH HILIC UPLC HIL

PowerPoint プレゼンテーション

Fig.1 Chemical structure of BAY o 9867

JAJP

CHEMOTHERAPY Fig. 1 Body weight changes of pregnant mice treated orally with AM- 715 Day of sestation

VOL. 34 S-2 CHEMOTH8RAPY 913

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND

Fig. - 2 Diagram of hair cycle.

VOL.42 S-1

Kyoto Sangyo University Slywotzky and Morrison 1997 Slywotzky ,2001, ,550 6, ,87


VENTANA ALK D5F3 Rabbit Monoclonal Antibody OptiView ALK D5F3

7)核41-3 索引 (出力

: / FDA HBsAg HIV 1/2 HCV : QMS : 3.5% IgM () 1.0% H317 - H334 - : : :: : QMS Everolimus : 6.4% (II) H400 - H % SDS QMS EDTA (K 3 ) EDTA (K 2 )

Dr ug Delivery original System article Investigation on utility of viscous ethyl oleate containing cis-diamminedichloro platinum (II) in tumor-bearing

VOL. 23 NO. 3 CHEMOTHERAPY 1067 Table 2 Sensitivity of gram positive cocci isolated from various diagnostic materials Table 3 Sensitivity of gram nega

untitled

(Shigen to Sozai) Vol.116 p (2000) 石炭灰フライアッシュからのゼオライトのアルカリ水熱合成と生成物の陽イオン交換特性 * 1 1 村山憲弘山川洋亮 2 3 小川和男芝田隼次 Alkali Hydrothermal Synthesis of Zeol

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

untitled


1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

untitled

202

元素分析


untitled

Isotope News 2017年10月号 No.753

研究成果報告書

2

/‚“1/ŒxŒ{‚×›î’æ’¶


CHEMOTHERAPY Table 1 Urinary excretion of mezlocillin Fig. 4 Urinary excretion of mezlocillin Fig. 3 Blood levels of mezlocillin

Fig. 1. Structure of [methyl-14c]zonisamide

Key words : Adverse reactions, Egg allergy, IgG antibody, Mills allergy, FAST

EVALUATION OF MAGNETIC RESONANCE IMAGING (MRI) IN DIAGNOSIS OF ACOUSTIC NEUROMA-COMPARATIVE STUDY WITH PLAIN X-RAY AND CTS- KIMIHISA NOMURA, M.D., MAK

988 CHEMOTHERAPY NOV. 1971

Microsoft Word - 「黄砂とその健康影響について」小冊子180323版

老年医学update

Waters Sigma-Aldrich 1.0 mg/ml LC Waters Alliance HPLC ACQUITY UPLC H-Class Bio 30 cm Alliance HPLC UV ACQUITY UPLC TUV mm nm XBridge Protein B

<30365F93C195CA8FDC5F88C092422E696E6464>

Contents 4 06 IP2 41 Thermo Scientific Nalgene Nalgene

PowerPoint プレゼンテーション

9 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /,, No.0,,/+,/0 (,**/) 251 * * E#ects of Microbial Transglutaminase on Melting Point and Gel property of G

YK170 17β-Estradiol EIA キット

Transcription:

1 1. 1 2. DDS 2 2.1. 2 2.2. 3 2.3. 3 2.4. 3 3. DDS 5 4. 7 5. 9 2 Solid-in-Oil 1. 11 1.1. 12 1.2. 14 1.3. 16 1.4. DDS 17 1.4.1. 18 1.4.1.1. 18 1.4.1.2. 18 1.4.1.3. 19 1.4.2. 19 1.4.2.1. 20 1.4.2.2. 21 1.5. DDS 23 1.5.1. Solid-in-Oil S/O 23 1.5.2. S/O 24 1.5.3. S/O 25 1.5.4. S/O 28 1.5.5. S/O 29 2. 31 2.1. 31 2.2. S/O 31 2.3. 32 2.4. 32 2.4.1. 32 2.4.2. ELISA 33 2.4.3. HRP 33 3. 34 3.1. S/O 34 3.2. FITC 36 3.2.1. YMP 36 3.2.2. FITC 37 3.2.3. FITC 39 3.3. EGFP HRP 41 3.4. 42 4. 45 5. 46

3 Solid-in-Oil 1. 51 1.1. 51 1.2. Gregory M. Glenn 52 1.3. 54 1.3.1. 54 1.3.2. 55 1.3.3. 57 1.3.3.1. 57 1.3.3.2. 59 1.3.3.3. 59 1.3.3.4. 60 1.3.3.5. Layer-by-layer-assembled films 60 1.3.3.6. 61 1.3.3.7. 61 1.4. Solid-in-Oil S/O 61 2. 62 2.1. 62 2.2. S/O 62 2.3. 63 2.4. OVA S/O 63 2.4.1. 63 2.4.2. 63 2.5. HEL S/O 64 2.5.1. 64 2.5.2. 64 2.6. Anti-OVA IgG from guinea pig, polyclonal ELISA 64 2.7. Anti-HEL IgG from rabbit, polyclonal ELISA 65 3. 66 3.1. OVA S/O 66 3.1.1. OVA S/O 66 3.1.2. Anti-OVA IgG from guinea pig, polyclonal ELISA 66 3.1.3. 68 3.2. HEL S/O 70 3.2.1. HEL S/O 70 3.2.2. 70 4. 72 5. 73

4 1. 76 1.1. 77 1.1.1. 77 1.1.2. 78 1.2. 81 1.2.1. lipoplex 82 1.2.2. polyplex 82 1.2.3. MEND 83 1.2.4. 84 1.3. 86 1.3.1. 86 1.3.2. 88 1.4. 92 1.5. 93 1.5.1. PLGA 93 1.5.2. ph 94 1.5.3. ph 94 2. 95 2.1. 95 2.2. 96 2.3. STR-R8 97 2.4. 100 2.4.1. pdna S/O 100 2.4.2. S/O 100 2.4.3. 101 2.5. 101 2.6. 101 2.7. 102 2.8. LIVE/DEAD assay 103 2.9. 104 2.10. WST assay 104 3. 105 3.1. 105 3.2. ER-290 : PC 106 3.3. 107 3.4. S/W 107 3.5. pdna 109 3.6. Carreir #1-2 110 3.7. 112 3.8. Carreir #4-5 113 3.9. 116 4. 117 5. 118 5 122 125

1 1. Drug Delivery System, DDS 4 DDS 1 DDS DDS DDS DDS 1 1 DDS Quality Of Life, QOL / 1000 % DDS 21 DDS 2 DDS DDS DDS DDS 1

1 2. DDS DDS DDS DDS DDS DDS DDS DDS [a] QOL 2.1. DDS 1 DDS 2 DDS 3 DDS 1 DDS DDS 2 3 2 4 DDS [a] intradermal i.d. /intracutaneous/ percutaneous injection subcutaneous s.c. /hypodermic injection intravenous i.v. injection intramuscular i.m. injection 5 1 ~ 2 2

1 3 DDS DDS 2.2. 2 2 PEG 3 [b] DDS PEG PLGA DDS 2.3. DDS DDS DDS 2.4. DDS 1 2 1 DDS [b] Polyethylene glycol PEG PEG PEG PEG DDS 3

1 PLGA DDS DDS ph 2 DDS DDS 4 ph enhanced permeation and retention EPR 5,6 [c] 3 2006 1 DDS 1986 EPR DDS EPR [c] EPR 200 nm 100 nm EPR 200 nm DDS EPR 4

1 3. DDS DDS DDS 1960 Alec Douglas Bangham DDS DDS 1 9 Fig.1.1 DDS DDS 7 [d] Fig.1.1 DDS 9 DDS 1990 Vadimir P. Torchilin Leaf Haung DDS 1 PEG 8 1980 immunoliposome PEG DDS PEG PEG DDS [d] 1964 Bangham TEM 5

1 PET MRI 4 in vitro 1990 2 3 1 DDS DDS 1 Table 1.1 DDS 1 1 DDS DDS multifunctional envelope type nano device, MEND DDS Table 1.1 DDS Core technologies Lipid-based carriers Liposomes, Lipid bilayers 9,10 DDS 2005, 2006 11 2009 12 MEND 2011 Oil-in-warer colloids, Solid-lipid particles; Water-in-oil colloids, Reverse micelles 13 Oil-in-water DDS 2004 14,15 Solid-lipid particles DDS 2002, 2007 16 2008 Micellar fibers, Supramolecular gels 17 2009 18 Samuel I. Stupp 2010 Inorganic carriers Carbon tubes 19 2010 20,21 PEG 2011 Quantum dots 22,23,24 2005, 2010 25 2006 Gold particles, Gold rods 26,27 DDS 2008, 2009 28 2009 Magnetic particles 29 DDS 2008 30,31 MRI 2008, 2009 Silica particles 32 2008 33 2008 6

1 Table 1.1 DDS Core technologies Polymeric carriers Linear chain, Macromolecular gels 34,35 2008, 2009 36 2011 37 2005 Polymeric micelles 38 Alexander V. Kabanov Pluronic 2008 39 Kazunari Kataoka 2009 Layer-by-layer (LbL) particles 40 LbL 2011 41 LbL MRI 2011 Spheres 42 PLGA 1997 43 PLGA 2011 Nanogels 44 2009 45,46 Kazunari Akiyoshi Kwangmeyung Kim 2010, 2009 Dendrimers 47,48,49 DDS 2004, 2005, 2011 50 2009 Naturally-derived carriers Viral vectors 51 Targeted viral vectors 2007 Virus like particles 52 Virus capsid 2006 4. DDS DDS 1990 Masahiro Goto Noriho Kamiya Eiichi Toorisaka Hongyu Piao Solid-in-Oil S/O 53,54,55,56 DDS DDS Fig.1.2 7

1 2 S/O DDS S/O DDS 3 2 QOL DDS 3 2 S/O DDS 4 DDS S/O 2 5 8

1 5. 1 DDS ISBN978-4-944157-88-4 2 K. Kataoka, Development of Innovative diagnosis and therapentic systems based on nanobiotechnology, Drug Delivery System 26 (2011) 7. 3 J. Milton Harris, R.B. Chess, Effect of pegylation on pharmaceuticals, Nature Reviews Drug Discovery 2 (2003) 214 221. 4 F. Meng, W.E. Hennink, Z. Zhong, Reduction-sensitive polymers and bioconjugates for biomedical applications, Biomaterials 30 (2009) 2180 2198. 5 Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Research 46 (1986) 6387 6392. 6 H. Maeda, T. Sawa, T. Konno, Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS, Journal of Controlled Release 74 (2001) 47 61. 7 A.D. Bangham, R.W. Horne, Negative Staining of Phospholipids and Their Structural Modification by Surface-Active Agents As Observed in the Electron Microscope, Journal of molecular biology 8 (1964) 660 668. 8 A.L. Klibanov, K. Maruyama, V.P. Torchilin, L. Huang, Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes, FEBS Letters 268 (1990) 235 237. 9 V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers, Nature Reviews Drug Discovery 4 (2005) 145 160. 10 M.L. Immordino, F. Dosio, L. Cattel, Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential, International journal of nanomedicine 1 (2006) 297 315. 11 J. Leeuw, H.C. Vijlder, P. Bjerring, H.A.M Neumann, Liposomes in dermatology today, Journal of the European Academy of Dermatology and Venereology 23 (2009) 505 516. 12 H. Hatakeyama, H. Akita, H. Harashima, A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma, Advanced Drug Delivery Reviews 63 (2011) 152 160. 13 S. Tamilvanan, Oil-in-water lipid emulsions: Implications for parenteral and ocular delivering systems, Progress in Lipid Research 43 (2004) 489 533. 14 R.H. Mullera, M. Radtkeb, S.A. Wissing, Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations, Advanced Drug Delivery Reviews 54 (2002) S131 S155. 15 A.J. Almeida, E. Souto, Solid lipid nanoparticles as a drug delivery system for peptides and proteins, Advanced Drug Delivery Reviews 59 (2007) 478 490. 16 S. Heuschkel, A. Goebel, R.H.H. Neubert, Microemulsions-Modern colloidal carrier for dermal and transdermal drug delivery, Journal of Pharmaceutical Sciences 97 (2008) 603 631. 17 F. Zhao, M.L. Ma, B. Xu, Molecular hydrogels of therapeutic agents, Chemical Society Reviews 38 (2009) 883 891. 18 H. Cui, M.J. Webber, S.I. Stupp, Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials, Biopolymers 94 (2010) 1-18. 19 W. Cheung, F. Pontoriero, O. Taratula, A.M. Chen, H. He, DNA and carbon nanotubes as medicine, Advanced Drug Delivery Reviews 62 (2010) 633 649. 20 M.J. Rybak-Smith, R.B. Sim, Complement activation by carbon nanotubes, Advanced Drug Delivery Reviews 63 (2011) 1031 1041. 21 M. Bottini, N. Rosato, N. Bottini, PEG-modified carbon nanotubes in biomedicine: Current status and challenges ahead, Biomacromolecules 12 (2011) 3381 3393. 22 I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nature Materials 4 (2005) 435 446. 23 V. Biju, T. Itoh, M. Ishikawa, Delivering quantum dots to cells: Bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging, Chemical Society Reviews 39 (2010) 3031 3056. 24 P. Zrazhevskiy, M. Sena, X. Gao, Designing multifunctional quantum dots for bioimaging, detection, and drug delivery, Chemical Society Reviews 39 (2010) 4326 4354. 25 M.N. Rhyner, A.M. Smith, X. Gao, H. Mao, L. Yang, S. Nie, Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging, Nanomedicine (London, England) 1 (2006) 209 217. 26 R.A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, W.J. Parak, Biological applications of gold nanoparticles, Chemical Society Reviews 37 (2008) 1896 1908. 27 E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity, Chemical Society Reviews 38 (2009) 1759 1782. 28 X. Huang, S. Neretina, M.A. El-Sayed, Gold nanorods: From synthesis and properties to biological and biomedical applications, Advanced Materials 21 (2009) 4880 4910. 29 V.I. Shubayev, T.R. Pisanic II, S. Jin, Magnetic nanoparticles for theragnostics, Advanced Drug Delivery Reviews 61 (2009) 467 477. 30 C. Sun, J.S.H. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery, Advanced Drug Delivery Reviews 60 (2008) 1252 1265. 31 N.A. Frey, S. Peng, K. Cheng, S. Sun, Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage, Chemical Society Reviews 38 (2009) 2532 2542. 32 I.I. Slowing, J.L. Vivero-Escoto, C.W. Wu, V.S.Y. Lin, Mesoporous silica nanoparticles as controlled release drug delivery 9

1 and gene transfection carriers, Advanced Drug Delivery Reviews 60 (2008) 1278 1288. 33 S. Hudson, J. Cooney, E. Magner, Proteins in mesoporous silicates, Angewandte Chemie-International Edition 47 (2008) 8582 8594. 34 L. Yu, J. Ding, Injectable hydrogels as unique biomedical materials, Chemical Society Reviews 37 (2008) 1473 1481. 35 E.S. Place, J.H. George, C.K. Williams, M.M. Stevens, Synthetic polymer scaffolds for tissue engineering, Chemical Society Reviews 38 (2009) 1139 1151. 36 T. Sun, G. Qing, B. Su, L. Jiang, Functional biointerface materials inspired from nature, Chemical Society Reviews 40 (2011) 2909 2921. 37 D.W. Pack, A.S. Hoffman, S. Pun, P.S. Stayton, Design and development of polymers for gene delivery, Nature Reviews Drug Discovery 4 (2005) 581 593. 38 E.V. Batrakova, A.V. Kabanov, Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers, Journal of Controlled Release 130 (2008) 98 106. 39 K. Osada, R.J. Christie, K. Kataoka, Polymeric micelles from poly(ethylene glycol)-poly(amino acid) block copolymer for drug and gene delivery, Journal of the Royal Society Interface 6 (2009) S325 S339. 40 K. Ariga, Y.M. Lvov, K. Kawakami, Q. Ji, J.P. Hill, Layer-by-layer self-assembled shells for drug delivery, Advanced Drug Delivery Reviews 63 (2011) 762 771. 41 H. Ai, Layer-by-layer capsules for magnetic resonance imaging and drug delivery, Advanced Drug Delivery Reviews 63 (2011) 772 788. 42 J.M. Anderson, M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres, Advanced Drug Delivery Reviews 28 (1997) 5 24. 43 S. Acharya, S.K. Sahoo, PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect, Advanced Drug Delivery Reviews 63 (2011) 170 183. 44 A.V. Kabanov, S.V. Vinogradov, Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities, Angewandte Chemie-International Edition 48 (2009) 5418 5429. 45 Y. Sasaki, K. Akiyoshi, Nanogel engineering for new nanobiomaterials: From chaperoning engineering to biomedical applications, Chemical Record 10 (2010) 366 376. 46 K. Park, S. Lee, E. Kang, K. Kim, K. Choi, I.C. Kwon, New generation of multifunctional nanoparticles for cancer imaging and therapy, Advanced Functional Materials 19 (2009) 1553 1566. 47 U. Boas, P.M.H. Heegaard, Dendrimers in drug research, Chemical Society Reviews 33 (2004) 43 63. 48 C.C Lee, J.A. MacKay, J.M.J. Fréchet, F.C. Szoka, Designing dendrimers for biological applications, Nature Biotechnology 23 (2005) 1517 1526. 49 M.A. Mintzer, M.W. Grinstaff, Biomedical applications of dendrimers: A tutorial, Chemical Society Reviews 40 (2011) 173 190. 50 D.G. Shcharbin, B. Klajnert, M. Bryszewska, Dendrimers in gene transfection, Biochemistry (Moscow) 74 (2009) 1070 1079. 51 R. Waehler, S.J. Russell, D.T. Curiel, Engineering targeted viral vectors for gene therapy, Nature Reviews Genetics 8 (2007) 573 587. 52 P. Singh, M.J. Gonzalez, M. Manchester, Viruses and their uses in nanotechnology, Drug Development Research 67 (2006) 23 41. 53 K. Abe, M. Goto, F. Nakashio, Surfactant-Chymotrypsin Complex as a Novel Biocatalyst in Organic Media, Journal of Fermentation and Bioengineering 83 (1997) 555 560. 54 N. Kamiya, M. Inoue, M. Goto, N. Nakamura, Y. Naruta, Catalytic and structural properties of surfactant-horseradish peroxidase complex in organic media, Biotechnology Progress 16 (2000) 52 58. 55 E. Toorisaka, H. Ono, K. Arimori, N. Kamiya, M. Goto, Hypoglycemic effect of surfactant-coated insulin solubilized in a novel solid-in-oil-in-water (S/O/W) emulsion, International Journal of Pharmaceutics 252 (2003) 271 274. 56 H. Piao, N. Kamiya, J. Watanabe, H. Yokoyama, A. Hirata, T. Fujii, I. Shimizu, S. Ito, M. Goto, Oral delivery of diclofenac sodium using a novel solid-in-oil suspension, International Journal of Pharmaceutics 313 (2006) 159 162. 10

2 Solid-in-Oil 1. mab Table 2.1 2009 10 2010 200 360 240 mab 6,000 2009 990 1 Products Campany Table 2.1 10 2009 Enbrel Amgen, Takeda Pharmaceuticals, (etanercept) Wyeth Centocor (Johnson & Johnson), Remicade Rheumatism Mitsubishi Tanabe Pharma, (infliximab) (mab) Schering-Plough Avastin Lung/bowel cancer Chugai, Genentech, Roche (bevacizumab) (mab) Rituxan/MabThera Lymphatic malignancy Biogen-IDEC, Genentech, Roche (rituximab) (mab) Humira Rheumatism Abbott, Eisai (adalimumab) (mab) Epogen/Procrit Amgen, Janssen-Cilag, (Renal) anemia /Eprex/ESPO Kyowa Hakko Kirin, Ortho (Glycoprotein hormone) (epoetin alfa) Herceptin Breast cancer Genentech, Chugai, Roche (trastuzumab) (mab) Lantus Diabetes Sanofi-aventis (insulin glargine) (Insulin derivative) Neulasta Cancer immunotherapy Amgen (pegfilgrastim) (PEG-cytokine) Aranesp/Nespo (Renal) anemia Amgen, Kyowa Hakko Kirin (darbepoetin alfa) (Glycoprotein hormone) s.c.: subcutaneous ; i.v.: intravenous. Indication Administration (Biopharmaceuticals) Methods Cycle and Periods Rheumatism Twice a week s.c. (TNF receptor-fc) for 3-6 months i.v. (3-4 hours) i.v. (90 min) i.v. (2 hours) s.c. s.c./i.v. i.v. (60 min) s.c. s.c. i.v. (60 min) Once a week for 6 months Once per 2 weeks for 2-6 months Once a week for 3-6 months Once per 2 weeks for 3-6 months Once a week for 6 months Once a week for 6 months Once a day Once a day for one month Once per 2 weeks for 6 months Table 2.1 Quality Of Life, QOL 11

2 1.1. DDS Fig.2.1 2 3 [a] 2 30 Alza Alejandro Zaffaroni Table 2.2 Zaffaroni 2 Advantages of the transdermal route for drug administation 1. Eliminates the vagaries of gastrointestinal absorption 2. Bypasses the portal circulation 3. Permits easy termination of therapy 4. Allows drug entry into the circulation when the gastrointestinal tract is not available or not suitable 5. Offers a means of painless systemic therapy for young children [a] Transdermal Transcutaneous Dermis Transdermal Epidermis Transepidermal Cutaneous Transcutaneous Dermatology Dermis Transdermal 12

2 Zaffaroni 1981 Table 2.2 5 2 ph 1 Table 2.3 FDA 3 Year Drug/Product name Indication Company 1979 Scopolamine/Transderm-Scop Motion sickness Novartis Consumer Health 1981 Nitroglycerin/Transderm-Nitro Angina pectoris Novartis 1984 Clonidine/Catapres-TTS Hypertension Boehringer Ingelheim 1986 Estradiol/Estraderm Menopausal symptoms Novartis 1990 Fentanyl/Duragesic Chronic pain Janssen Pharmaceutica 1991 Nicotine/ ProStep, Nicoderm, Habitrol Smoking cessation Elan, GlaxoSmithKline, Novartis Consumer Health 1993 Testosterone/Testoderm Testosterone deficiency Alza 1995 Lidocaine with epinephrine / Local dermal analgesia Iomed Iontocaine (iontophoresis) 1998 Estradiol with norethidrone/combipatch Menopausal symptoms Novartis 1999 Lidocaine/Lidoderm Post-herpetic neuralgia pain Endo Pharmaceuticals 2001 Ethinyl estradiol with norelgestromin/ortho Evra Contraception Ortho-McNeil Pharmaceutical 2003 Estradiol with levonorgestrel/ Climara Pro Menopausal symptoms Bayer Healthcare Pharmaceuticals 2003 Oxybutynin/Oxytrol Overactive bladder watson Pharma 2004 Lidocaine (ultrasound)/sonoprep Local dermal anesthesia Echo Therapeutics 2005 Lidocaine with tetracaine/synera Local dermal analgesia Endo Pharmaceuticals 2006 Fentanyl HCl/Ionsys (iontophoresis) Acute postoperative pain Alza 2006 Methylphenidate/Daytrana Attention deficit hyperactivity disorder Shire 2006 Selegiline/Emsam Major depressive disorder Bristol-Myers Squibb 2007 Rotigotine/Neupro Parkinson s disease Schwarz Pharma 2007 Rivastigmine/Exelon Dementia Novartis FDA Table 2.3 QOL 3 Zaffaroni 13

2 1.2. Fig.2.2 5,9! Fig.2.2 200 µm 2 mm 3 15 µm keratinocyte [b] melanocyte [c] [c] corneocyte, horny cell [b] 10 ~ 20 2 ~ 4 10 ~ 25 % 70 % ph 4.2 ~ 5.6 1 cm 2 10 100 4,5,6,7,8 2 [d] [b] [c] 4 [d] 1 1 M mg S cm 2 # L cm J = dm " 1 & % ( mg/ $ dt S ' cm 2 dc h x dx mg/cm3 /cm D! cm 2 /h J = D dc dx = D C 1 " C " 2 L! K = C 1 = C % 2 $ # C i C ' f & J = DK L C " ( i " C f ) C f = 0 P = DK % $ ' cm/h J = PC i # L & J! DDS C i DDS! P P 14!

2 1,000 1 1,000 1 9 Fig.2.3 a b c 5,9 Fig.2.3a Fig.2.3a Fig.2.3bc Fig.2.3b Fig.2.3c Fig.2.4 15

2 1.3. Fig.2.4 11 Jan D. Bos 2000 The 500 Dalton rule for the skin penetration of chemical compounds and drugs 500 10 The 500 Dalton rule 2003 Samir Mitragotri 11 Fig.2.4a Mitragotri P cm/h 10 10 1 Fig.2.4b Kenji Sugibayashi 2007 11 20 300 DFNa 4 1 4 100 1000 10000 1 3 LSE-High, TOYOBO 16

2 1.4. DDS Zaffaroni 30 DDS 3 1 2008 sirna 12 2 3 Table 2.1 3 DDS DDS 1 DDS DDS 2 3 Fig.2.5 DDS 13 Fig.2.5 occlusive dressing therapy, ODT Fig.2.5a transdermal 3 Fig.2.5b 14 15 Fig.2.5c Fig.2.5d Fig.2.5e DDS Fig.2.5f 17

2 1.4.1. 1.4.1.1. 20 k ~ 16 MHz 100 khz 16 Samir Mitragotri [e] Mitragotri 1995 17 Fig.2.6 18 18 19 Table 2.1 Mitragotri 20 1.4.1.2. 0.01 ~ 100 msec 21 1993 22 -MIT James C. Weaver [e] 23 1900 1980 24 1990 Yie W. Chien Fig.2.7 Fig.2.8 25 [e] Mark R. Prausnitz 1993 -MIT James C. Weaver James C. Weaver Robert Langer Samir Mitragotri 1995 Robert Langer 1990 18

2 Calcitonin LH-RH Somatorelin Vasopressin somatostatin 25 26 1.4.1.3. Fig.2.9 1970 1990 27 Mark R. Prausnitz [e] 1998 Fig.2.9 28,29 28 Prausnitz 2003 PLA PGA 29 2005 2008 PLGA 30 50 µm 200 ~ 800 µm 10 1.4.2. 1990 ~ 2000 QOL 30 Zaffaroni Table 2.2 1 19

2 3 1.4.2.1. Table 2.4 Table 2.4 Peptides Sequences References Oligo-arginine TAT YARA WLR Antennapedia homeodomain Haptide LMWP TD-1 R n (n = 7-9) (YG)RKKRRQRRR YARAAARQARA (WLRRIKA) n (n = 1-3) RQIKIWFQNRRMKWKK TRWYSMKKTTMKIIPFNRL VSRRRRRRGGRRRR ACSSSPSKHCG 31,32,33,40,41 32,33,34,35,36,40,41 37,38 38 42 43 44 45 2000 Paul A. Khavari Paul A. Wender R 7 A CsA 31 CsA 1200 1 Wender R 7 4 Khavari R 7 CsA ph 7.4 CsA 2001 2005 S.Y. Choi R 9 TAT 32,33,34,35,36 L.B. Lopes YARA WLR heat shock protein 20 37,38,39 Lee R 9 TAT GFP 40,41 SIINFEKL CpG 42 haptide 43 LMWP 44 20

2 Chen in vivo TD-1 45,46 10 2000 Khavari Khavari Lopes 38 Fig.2.10 47,48,49 Fig.2.10a 47,48 2003 Kazuo Ohtake Poly-L-Arg Fig.2.10b 49 50 51 1.4.2.2. 1990 Gregor Cevc 1998 Cevc edge activator Fig.2.11a Transfersome Cevc IDEA AG 52 Transfersome IDEA AG 53 21

2 1 54,55 2 56,57 1 Joke A. Bouwstra 2000 Fig.2.11e 58,59 Bouwstra Transdersome Fig.2.11e 60 Fig.2.11b 61 Fig.2.11c 62 1 2 15 63 Fig.2.11d Fig.2.11 22

2 1.5. DDS Solid-in-Oil Solid-in-Oil 1.5.1. Solid-in-Oil S/O Fig.2.12 S/O 1994 2000 Masahiro Goto Noriho Kamiya - 1990-20 % - Goto Kamiya - 64,65,66,67,68,69,70 1997 Solid-in-Oil S/O water-in-oil W/O 71,72,73,74,75,76,77,78 Fig.2.13a Fig.2.13b - 79 80,81,82,83,84,85,86 87,88 89 PEG 90,91,92,93,94,95 96,97,98 23

2 99,100,101,102 1990 - Eiichi Toorisaka 2003 W/O - DDS Toorisaka 2C 18 9 GE Toorisaka 103 S/O Toorisaka S/O oil-in-water Solid-in-Oil-inWater S/O/W 103 Hongyu Piao S/O 104 2003 2008 S/O 105,106,107,108,109,110,111,112,113,114 2011 S/O 115 Piao 2008 S/O 116 117,118 119 2 120 3 121 122,123,124,125,126,127,128, 129,130 Fig.2.13 S/O 81,71,103,104 1.5.2. S/O S/O W/O W/O W/O 24

2 - W/O Oil Water W/O Oil Solid Solid-in-Oil S/O Fig.2.14 S/O 1.5.3. S/O 1990 2000 Masahiro Goto S/O Solid-in-Oil S/O 131,132,133 PLGA S/O Fig.2.15a W/O/W Fig.2.15b 4 S/O PLGA S/O 20 % 1990 Goto PLGA Table 2.5 S/O 25

2 1.6 wt.% W/O 1 PEG PLGA S/O 2010 S/O PLGA 134 Fig.2.15 PLGA 133, 135 Table 2.5 http://macro.lsu.edu/howto/index.htm Solvent Solubility in water Solubility of water Dielectric constant Density g/ml Melting point C Boiling point C Vapor pressure Torr 20 C Non-polar n-hexane Cyclohexane Toluene 1,4-Dioxane Isopropyl Myristate Chloroform Diethyl ether 0.014 % 20 C 0.006 % 25 C 0.052 % 25 C! < 0.1 % 20 C 0.815 % 20 C 6.89 % 20 C 0.01 % 20 C 0.01 % 20 C 0.03 % 25 C! < 0.1 % 20 C 0.06 % 20 C 1.26 % 20 C 1.9 2.0 2.4 2.3 3.2 4.8 4.3 0.655 0.779 0.867 1.034 0.853 1.489 0.713 95.3 6.5 95 11.8 3 63.6 117.4 68.7 80.7 110.6 101.3 192.6 61.2 34.6 124 77.5 28.5 29 < 1.0 158.4 442 Polar aprotic Ethyl acetate Dichloromethane Tetrahydrofuran (THF) Acetone Dimethylformamide (DMF) Acetonitrile Dimethyl sulfoxide (DMSO) 8.7 % 20 C 1.60 % 20 C!!!!! 3.3 % 20 C 0.24 % 20 C!!!!! 6.0 8.9 7.6 20.7 36.7 37.5 46.7 0.901 1.326 0.888 0.790 0.949 0.782 1.100 84.0 95.1 108.5 94.7 60.4 43.8 18.5 77.1 39.8 66 56.3 153.0 81.6 189.0 73.0 350 142 184.5 2.7 73 0.4 Polar protic Acetic acid Trifluoroacetic Acid (TFA) Isopropanol (Isopropyl alcohol) Ethanol (Ethyl alcohol) Methanol (Methyl alcohol) Water!!!!!!!!!!!! 6.2 8.6 19.9 24.6 32.7 80.1 1.049 1.489 0.785 0.789 0.791 1.000 16.5 15.3 88.0 114.1 97.7 0.0 118.5 71.8 82.3 78.3 64.7 100.0 11.8 97.5 32.4 43.9 97 17.5 26

2 1 S/O Fig.2.16 Masato Kukizaki 55 C 60 C W/O S/O 136 shirasu porous glass SPG 137 60 C S/O/W solid lipid particle S/O 60 C 60 C Fig.2.16 S/O/W SPG 137,136 W/O Solid-in-Oil 1 nm ~ 1 µm emulsion µm nm Solid-in-Oil Solid-in-Oil Solid W/O Solid-in-Oil Solid Solid-in-Oil Solid 27

2 1.5.4. S/O S/O 138 W/O S/O 1 W/O 2-3 1 2 S/O 5.0 mg/ml 3 W/O W/O 5 wt% 20 wt% 4 S/O 0.2 % w/v S/O Fig.2.16 Fig.2.17 S/O 116,117,118 2008 Hongyu Piao S/O 116 Fig.2.17a 117 118 S/O Fig.2.17a ER-290 S/O 2012 S/O 2005 Masahiro Goto S/O ASPION 2009 SO 4349639 S/O VIVCO Fig.2.17c 28

2 1.5.5. S/O Table 2.6 S/O pdna DFNa NaCl L1695 W/O Milli-Q ER-290 L-195 W/O dinitrochlorobenzene IPM W/O Table 2.6 S/O S/O W/O Milli-Q W/O S/O ph W/O Milli-Q S/O Table 2.4 Fig.2.18 S/O W/O S/O ER-290 [f] L-195 [f] Fig.2.18 ER-290 L-195 S/O W/O Table 2.5 [f] ER-290 HLB 2 HLB 0 ~ 20 HLB ER-290 ER-290 ER HLB 2 90 L-195 ER-290 L-195 ER-290 L-195 Fig.2.18 29

2 S/O S/O W/O W/O W/O Table 2.5 6.5 C S/O W/O - Fig.2.19 IPM Isopropyl myristate, IPM Fig.2.19 IPM 167 C 3 C IPM 141 S/O Fig.2.18 S/O S/O S/O ER-290 drug ER-290 [g] 1 50 S/O W/O ER-290 2.0 mg/ml = 0.2 % w/v W/O 4 S/O W/O POLYTRON PT2500E POLYTRON!196 C FD5N; EYELA, Tokyo, Japan 20 C S/O W/O S/O [g] S/O S/O S/O 1 30

2 2. 2.1. fluorescein isothiocyanate FITC Sigma-Aldrich Tokyo, Japan horseradish peroxidase HRP Wako Pure Chemical Industries Osaka, Japan ER-290 L-195 Mitsubishi-Kagaku Foods Co. Tokyo, Japan isopropyl myristate IPM Tokyo Kasei Co. Tokyo, Japan Yucatan micropig YMP, 5-month-old female 139 [h] Charles River Japan, Inc. Tokyo, Japan metal enhanced diaminobendizine DAB substrate kit Pierce Rockford, IL, USA 4 % Rhodamine-labeled 1,2-dioleoyl-sn-glycero- 3-phosphoethanolamine DOPE Avanti Polar Lipids Inc. Alabaster, AL HistoPrep TM Fisher Scientific NJ, USA Bovine insulin Enzyme-Linked ImmunoSorbent Assay ELISA kit Mercodia Wild-type enhanced green fluorescent protein EGFP His-tag 2.2. S/O S/O [i] 1 1.0 mg/ml 5.0 ml [j] 25 mg/ml ER-290 10 ml W/O ER-290 2 1 IPM 5.0 ml S/O 1.0 mg/ml ER-290 50 mg/ml Fig.2.20 [h] in vitro 1997 Makiko Fujii in vitro Yucatan micropig YMP 139 YMP 25 kg 1 15 20 µm Yucatan micropig skin 40 ~ 200 µm 1.5 ~ 2 mm Wang 40 EGFP R9 YMP YMP 1000 YMP in vitro [i] OVA : ER-290 1 : 50 w:w 2006 ~ 2008 2012 ER-290 S/O 4 [j] FITC Milli-Q Milli-Q 2 HCl ph NaOH ph HCl ph PBS HCl NaOH PBS S/O 5.0 mg 0.01 M HCl 1.0 ml 0.01 M NaOH 0.50 ml Milli-Q 3.5 ml ph 3.5 1.0 mg/ml 5.0 ml Milli-Q 1.0 ml 1.0 M HCl 40 µl 50 mg 0.01 M NaOH 0.7 ml Milli-Q 3.26 ml ph 3.5 10 mg/ml 5.0 ml 31

2 2.3. Microviscometer AWVn; Anton Parr GmbH, Graz, Austria Zetasizer Nano-ZS Malvern, Worcestershire, UK [p] 2.4. in vitro 1 80 C YMP 2 mm 2! 2 cm YMP 2 0.785 cm 2 5.0 ml PBS ph 7.4 32.5 C 500 rpm 1 YMP 3 S/O 0.50 ml 2.4.1. 4 3 YMP [k] 4 % 5 5 HistoPrep TM YMP 80 C CM1510; Leica, Wetzlar, Germany 20 µm 20 C 6 20 C PBS HistoPrep TM Fig.2.21 [k] 32

2 2.4.2. ELISA 7 3 YMP 1 mm [l] 140 [m] 1.5 ml 3 FITC 8 2 % BSA in PBS [l] 100 ~ 200 Mercodia Bovine insulin ELISA kit [n] calibrator 25 µl/well 9 ELISA kit HRP-labeled anti-insulin IgG from mouse, monoclonal conjugation buffer 11 100 µl/well 10 2 ELISA kit wash buffer 5 times/well 11 Mercodia ELISA kit TMB 200 µl/well 12 37 C 15 0.5 M H 2 SO 4 50 µl/well 13 450 nm O.D. Fig.2.22 2.4.3. HRP HRP 14 6 DAB H 2 O 2 [o] 15 15 HRP [l] 2 % BSA PBS ELISA 3 titer BSA [m] 0.04 M H 3PO 4 0.04 M NaH 2PO 4 ph 2.3 A A 95 % B 3 : 7 A:B, v:v 140 [n] Mercodia bovine insulin ELISA kit ELISA conjugation buffer 1 1 HRP 1 2 ELISA ELISA kit calibrator FITC [o] HRP DAB HRP DAB HRP 2 33

2 3. 3.1. S/O Table 2.7 FITC EGFP HRP S/O 1.0 mg/ml Fig.2.23 FITC S/O IPM Fig.2.23a S/O Fig.2.23b IPM Fig.2.23a ER-290 EGFP HRP FITC EGFP HRP S/O dynamic light scattering, DLS Fig.2.24 Fig.2.26 Table 2.7 mean Fig.2.23 FITC a IPM b S/O particle size poly dispersion index PDI distribution width S/O PDI 0.2 1 distribution width IPM ER-290 100 ~ 400 nm 1 1 S/O W/O S/O FITC Fig.2.27 3.4 nm FITC 1 S/O ER-290-FITC 257 nm 1 40 FITC ER-290 FITC S/O 1 DLS Fig.2.28 Proteins FITC-labeld insulin EGFP HRP m.w. Table 2.7 S/O n = 6 [p] ca. 6 kda ca. 27 kda ca. 40 kda S/O nanodispersion Proteins ER-290 Weight ratio 5.0 mg 250 mg 1:50 Mean particle size [nm] 257 ± 14 236 ± 38 214 ± 22 PDI 0.16 ~ 0.37 0.13 ~ 0.40 0.23 ~ 0.48 Distribution width [nm] 115 ± 31 81 ± 16 59 ± 19 [p] DLS DLS 1 3 3 6 DLS 3 1 18 Fig.2.24a 1-1 1-2 1-3 DLS 3 3 S/O PDI PDI > 0.2 Z average mean particle size distribution width DLS 68 % mean particle size ± distribution width 34

2 Fig.2.24 FITC S/O n = 6 [p] Fig.2.25 EGFP S/O n = 6 [p] Fig.2.26 HRP S/O n = 6 [p] 35

2 Fig.2.27 FITC n = 1 Fig.2.28 1 FITC S/O n = 1 2008 Hongyu Piao S/O IPM 116 FITC EGFP HRP IPM 3.2. FITC FITC S/O S/O 116 3.2.1. YMP YMP YMP Fig.2.29 Fig.2.29a Fig.2.29b 15 µm Fig.2.29b 200 µm Fig.2.29a 2 mm Fig.2.29c IPM 72 72 Fig.2.29 YMP a 10 b 40 c 72 36

2 3.2.2. FITC Fig.2.30 FITC FITC S/O FITC PBS YMP 48 Control PBS Control 0.4 3 Fig.2.30 YMP FITC S/O IPM Fig.2.30A Fig.2.30D Fig.2.30 FITC 48 [q] YMP Fig.2.31 0 Fig.2.31A Fig.2.31A Fig.2.31E FITC Fig.2.31F FITC S/O IPM 12 24 FITC Fig.2.31E 48 Fig.2.31A 0 24 FITC Fig.2.31 [q] [q] 10 200 µm 37

2 Fig.2.32 48 [q] Fig.2.33 24 [q] 38

2 Proteins Table 2.8 FITC S/O FITC-labeld insulin S/O nanodispersion Proteins ER-290 L-195 Weight ratio 125 mg 1:25 5.0 mg 250 mg 1:50 250 mg 1:50 Fig.2.34 48 [q] Fig.2.32 Fig.2.31 48 S/O 24 FITC Fig.2.33 24 FITC 4 ~ 12 12 Table 2.8 Fig.2.34 W/O FITC S/O L-195 3.2.3. FITC FITC 6,000 Sintov 140 Sintov HPLC 210 nm ELISA Table 2.9 [r] FITC Fig.2.35 YMP FITC ELISA Fig.2.35 S/O nanodispersion *p<0.05 FITC S/O 39

2 S/O 7 Lopes 2,000 P20 37 5 ~ 7 Table 2.8 Fig.2.36 3 S/O 6,000 FITC S/O IPM IPM Table 2.9 1.0 ml [r] Samples FITC-labeled insulin ER-290 IPM Milli-Q water PBS Aqueous solution (PBS) IPM solution W/O emulsion Physical mixture S/O nanodispersion 1.0 mg 1.0 mg 1.0 mg 1.0 mg 1.0 mg 50 mg 50 mg 50 mg 1.0 ml 0.9 ml 1.0 ml 1.0 ml 0.1 ml 1.0 ml Fig.2.35 FITC 48 [s] [r] IPM FITC IPM W/O 10 mg/ml FITC A ER-290 IPM B 1:9 A:B, v:v FITC ER-290 IPM 3 1 [s] Bartlett one-way ANOVA Dunnett post-hoc test 5 % *p<0.05 vs 40

2 Fig.2.36 48 n = 1 3.3. EGFP HRP S/O 6,000 ELISA Enhanced green fluorescent prtotein, EGFP 27,000 Horseradish peroxidase, HRP 40,000 Table 2.7 Fig.2.25 Fig.2.26 S/O FITC Fig.2.37 EGFP HRP 24 [t] FITC EGFP HRP EGFP HRP HRP HRP Fig.2.37A-D Fig.2.37E-H EGFP HRP 6 kda EGFP [t] A,C,E,G 10 200 µm B,D,F,H 40 15 µm 41

2 27 kda HRP 40 kda S/O Fig.2.37D Fig.2.37H EGFP HRP 15 µm FITC 3.4. S/O EGFP HRP Piao DFNa YMP PBS 116 ER-290-DFNa PBS ER-290-DFNa ER-290 DFNa ER-290-DFNa EGFP HRP S/O - Table 2.10 S/O 1.0 ml FITC-labeld insulin Rhodamine-labeld DOPE ER-290 1.0 mg 1.0 mg 50 µg 50 µg 50 mg 50 mg 50 mg Fig.2.38 S/O ER-290 FITC S/O DOPE [u] DOPE ER-290 W/O 25 mg/ml ER-290 DOPE 25 µg/ml [u] DOPE 1302 IPM ER-290 L-195 IPM ER-290 DOPE ER-290 42

2 FITC DOPE Table 2.10 S/O Fig.2.38 S/O FITC DOPE DOPE S/O Fig.2.39 FITC DOPE 48 [v] Fig.2.39 Table 2.10 3 FITC DOPE 1,302 S/O 1,055 ER-290 ER-290 S/O Fig.2.40 Fig.2.40 [v] FITC DOPE 20 100 µm 43

2 S/O IPM Sato IPM 141 Bouwstra 58 Fig.2.3a IPM S/O Fig.2.3a YMP FITC EGFP PBS 6 kda FITC 27 kda EGFP FITC transdermal 6 kda FITC Fig.2.41 EGFP FITC 48 [w] S/O IPM ER-290 FITC Fig.2.30 Fig.2.34 EGFP HRP Fig.2.37 [w] 10 200 µm 44

2 4. Yoshiro Tahara, Shota Honda, Noriho Kamiya, Hongyu Piao, Akihiko Hirata, Eiji Hayakawa, Takeru Fujii, Masahiro Goto, A solid-in-oil nanodispersion for transcutaneous protein delivery, Journal of Controlled Release 131 (2008) 14 18. FITC 6,000 EGFP 27,000 HRP 40,000 Solid-in-Oil S/O IPM ER-290 L-195 FITC EGFP HRP S/O 200 nm IPM 1 Yucatan micropig YMP S/O in vitro S/O FITC YMP FITC ELISA ELISA IPM W/O S/O EGFP YMP EGFP HRP YMP HRP HRP 4 S/O FITC S/O DOPE YMP S/O IPM ER-290 S/O IPM DDS 45

2 5. 1 G. Walsh, Biopharmaceutical benchmarks 2010, Nature Biotechnology 28 (2010) 917 924. 2 A. Zaffaroni, ALZA: an enterprise in biomedical innovation, Technovation 1 (1981) 135 146. 3 M.R. Prausnitz, R. Langer, Transdermal drug delivery, Nature Biotechnology 26 (2008) 1261 1268. 4 ISBN4-524-40175-X 5 K.C. Madison, Barrier function of the skin: La Raison d'etre of the epidermis, Journal of Investigative Dermatology 121 (2003) 231 241. 6 B.J. Thomas, B.C. Finnin, The transdermal revolution, Drug Discovery Today 9 (2004) 697 703. 7 N.F.H. Ho, C.L. Barsuhna, P.S. Burton, H.P. Merkle, (D) Routes of Delivery: Case Studies: (3) Mechanistic insights to buccal delivery of proteinaceous substances, Advanced Drug Delivery Reviews 8 (1992) 197 235. 8 M.R. Prausnitz, S. Mitragotri, R. Langer, Current status and future potential of transdermal drug delivery, Nature Reviews Drug Discovery 3 (2004) 115 124. 9 B.W. Barry, Novel mechanisms and devices to enable successful transdermal drug delivery, European Journal of Pharmaceutical Sciences 14 (2001) 101 114. 10 J.D. Bos, M.M.H.M. Meinardi, The 500 Dalton rule for the skin penetration of chemical compounds and drugs, Experimental Dermatology 9 (2000) 165 169. 11 S. Mitragotri, Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways, Journal of Controlled Release 86 (2003) 69 92. 12 P. Ritprajak, M. Hashiguchi, M. Azuma, Topical application of cream-emulsified CD86 sirna ameliorates allergic skin disease by targeting cutaneous dendritic cells, Molecular Therapy 16 (2008) 1323 1330. 13 S. Mitragotri, Immunization without needles, Nature Reviews Immunology 5 (2005) 905 916. 14 S.A. Frech, H.L. Dupont, A.L. Bourgeois, R. Mckenzie, J.B. Gerson, J.F. Figueroa, P.C. Okhuysen, N.H. Guerrero, F.G.M. Sandoval, J.H.M.M. Romero, Z.D. Jiang, E.J. Asturias, J. Halpern, O.R. Torres, A.S. Hoffman, C.P. Villar, R.N. Kassem, D.C. Flyer, B.H. Andersen, K. Kazempour, S.A. Breisch, G.M. Glenn, Use of a patch containing heat-labile toxin from Escherichia coli against travellers diarrhoea: a phase II, randomised, double-blind, placebo-controlled field trial, Lancet 371 (2008) 2019 2025. 15 I. Skountzou, F.S. Quan, J. Jacob, R.W. Compans, S.M. Kang, Transcutaneous immunization with inactivated influenza virus induces protective immune responses, Vaccine 24 (2006) 6110 6119. 16 S. Mitragotri, J. Kost, Low-frequency sonophoresis A review, Advanced Drug Delivery Reviews 56 (2004) 589 601. 17 S. Mitragotri, D Blankschtein, R. Langer, Ultrasound-mediated transdermal protein delivery, Science 269 (1995) 850 853. 18 J. Kost, S. Mitragotri, R.A. Gabbay, M. Pishko, R. Langer, Transdermal monitoring of glucose and other analytes using ultrasound, Nature Medicine 6 (2000) 347 350. 19 A.G. Doukas, N. Kollias, Transdermal drug delivery with a pressure wave, Advanced Drug Delivery Reviews 56 (2004) 559 579. 20 M. Ogura, S. Paliwal, S. Mitragotri, Low-frequency sonophoresis: Current status and future prospects, Advanced Drug Delivery Reviews 60 (2008) 1218 1223. 21 J.C. Weaver, T.E. Vaughan, Y. Chizmadzhev, Theory of electrical creation of aqueous pathways across skin transport barriers, Advanced Drug Delivery Reviews 35 (1999) 21 39. 22 M.R. Prausnitz, V.G. Bose, R. Langer, J.C. Weaver, Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery, Proceedings of the National Academy of Sciences of the United States of America 90 (1993) 10504 10508. 23 M.R. Prausnitz, A practical assessment of transdermal drug delivery by skin electroporation, Advanced Drug Delivery Reviews 35 (1999) 61 76. 24 C.T. Costello, A.H. Jeske, Iontophoresis: applications in transdermal medication delivery, Physical Therapy 75 (1995) 554 563. 25 Y.N. Kalia, A. Naik, J. Garrison, R.H. Guy, Iontophoretic drug delivery, Advanced Drug Delivery Reviews 56 (2004) 619 658. 26 A.R. Denet, R. Vanbever, V. Preat, Skin electroporation for transdermal and topical delivery, Advanced Drug Delivery Reviews 56 (2004) 659 674. 27 M.R. Prausnitz, Microneedles for transdermal drug delivery, Advanced Drug Delivery Reviews 56 (2004) 581 587. 28 S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz, Microfabricated Microneedles: A Novel Approach to Transdermal Drug Delivery, Journal of Pharmaceutical Sciences 87 (1998) 922 925. 29 D.V. McAllister, P.M. Wang, S.P. Davis, J.H. Park, P.J. Canatella, M.G. Allen, M.R. Prausnitz, Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies, Proceedings of the National Academy of Sciences of the United States of America 100 (2003) 13755 13760. 30 R.F. Donnelly, T.R.R. Singh, A.D. Woolfson, Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety, Drug Delivery 17 (2010) 187 207. 31 J.B. Rothbard, S. Garlington, Q. Lin, T. Kirschberg, E. Kreider, P.L. McGrane, P.A. Wender, P.A. Khavari, Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation, Nature Medicine 6 (2000) 1253 1257. 32 L.H. Jin, J.H. Bahn, W.S. Eum, H.Y. Kwon, S.Ho Jang, K.H. Han, T.C. Kang, M.H. Won, J.H. Kang, S.W. Cho, J. Park, S.Y. 46

2 Choi, Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells, Free Radical Biology & Medicine 31 (2001) 1509 1519. 33 J. Park, J. Ryu, L. H. Jin, J. H. Bahn, J. A. Kim, C. S. Yoon, D. W. Kim, K. H. Han, W. S. Eum, H. Y. Kwon, T. C. Kang, M. H. Won, J. H. Kang, S. W. Cho, S. Y. Choi, 9-Polylysine Protein Transduction Domain: Enhanced Penetration Efficiency of Superoxide Dismutase into Mammalian Cells and Skin, Molecules and Cells 13 (2002) 202 208. 34 D.W. Kim, W.S. Eum, S.H. Jang, C.S. Yoon, H.S. Choi, S.H. Choi, Y.H. Kim, S.Y. Kim, E.S. Lee, N.I. Baek, H.Y. Kwon, J.H. Choi, Y.C. Choi, O. S. Kwon, S.W. Cho, K. Han, K.S. Lee, J. Park, S.Y. Choi, Ginsenosides Enhance the Transduction of Tat-Superoxide Dismutase into Mammalian Cells and Skin, Molecules and Cells 16 (2003) 402 406. 35 J.M. Lim, M.Y. Chang, S.G. Park, N.G. Kang, Y.S. Song, Y.H. Le, Y.C. Yoo, W.G. Cho, S.Y. Choi, S.H. Kang, Penetration enhancement in mouse skin and lipolysis in adipocytes by TAT-GKH, a new cosmetic ingredient, Journal of Cosmetic Science 54 (2003) 483 491. 36 W.S. Eum, S.H. Jang, D.W. Kim, H.S. Choi, S.H. Choi, S.Y. Kim, J.J. An, S.H. Lee, K. Han, J.H. Kang, T.C. Kang, M.H. Won, Y.J. Cho, J.H. Choi, T.Y. Kim, J. Park, S.Y. Choi, Enhanced Transduction of Cu, Zn-Superoxide Dismutase with HIV-1 Tat Protein Transduction Domains at Both Termini, Molecules and Cells 19 (2005) 191 197. 37 L.B. Lopes, C.M. Brophy, E. Furnish, C.R. Flynn, O. Sparks, P. Komalavilas, L. Joshi, A. Panitch, M.V.L.B. Bentley, Comparative Study of the Skin Penetration of Protein Transduction Domains and a Conjugated Peptide, Pharmaceutical Research 22 (2005) 750 757. 38 L.B. Lopes, E. Furnish, P. Komalavilas, B.L. Seal, A. Panitch, M.V.L.B. Bentley, C.M. Brophy, Enhanced skin penetration of P20 phosphopeptide using protein transduction domains, European Journal of Pharmaceutics and Biopharmaceutics 68 (2008) 441 445. 39 L.B. Lopes, E.J. Furnish, P. Komalavilas, C.R. Flynn, P. Ashby, A. Hansen, D.P. Ly, G.P. Yang, M.T. Longaker, A. Panitch, C.M. Brophy, Cell permeant peptide analogues of the small heat shock protein, HSP20, reduce TGF-!1-induced CTGF expression in keloid fibroblasts, Journal of Investigative Dermatology 129 (2009) 590 598. 40 Y.H. Wang, C.P. Chen, M.H. Chan, M. Chang, Y.W. Hou, H.H. Chen, H.R. Hsu, K. Liu, H.J. Lee, Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells, Biochemical and Biophysical Research Communications 346 (2006) 758 767. 41 Y.W. Hou, M.H. Chan, H.R. Hsu, B.R. Liu, C.P. Chen, H.H. Chen, H.J. Lee, Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides, Experimental Dermatology 16 (2007) 999 1006. 42 M.P.M. Schutze-Redelmeier, S. Kong, M.B. Bally, J.P. Dutz, Antennapedia transduction sequence promotes anti tumour immunity to epicutaneously administered CTL epitopes, Vaccine 22 (2004) 1985 1991. 43 S. Frankenburg, I. Grinberg, Z. Bazak, L. Fingerut, J. Pitcovski, R. Gorodetsky, T. Peretz, R. M. Spira, Y. Skornik, R. S. Goldstein, Immunological activation following transcutaneous delivery of HR-gp100 protein, Vaccine 25 (2007) 4564 4570. 44 Y. Huang, Y. S. Park, C. Moon, A. E. David, H. S. Chung, V. C. Yang, Synthetic Skin-Permeable Proteins Enabling Needleless Immunization, Angewandte Chemie International Edition 49 (2010) 2724 2727. 45 M.R. Prausnitz, A peptide chaperone for transdermal drug delivery, Nature Biotechnology 24 (2006) 416 417. 46 Y.P. Chen, Y.Y. Shen, X. Guo, C.S. Zhang, W.J. Yang, M.L. Ma, S. Liu, M.B. Zhang, L.P. Wen, Transdermal protein delivery by a coadministered peptide identified via phage display, Nature Biotechnology 24 (2006) 455 460. 47 S. Tsukita, M. Furuse, M. Itoh, Multifunctional strands in tight junctions, Nature Reviews Molecular Cell Biology 2 (2001) 285 293. 48 C.M. Niessen, Tight junctions/adherens junctions: Basic structure and function, Journal of Investigative Dermatology 127 (2007) 2525 2532. 49 K. Ohtake, T. Maeno, H. Ueda, H. Natsume, Y. Morimoto, Poly-L-arginine predominantly increases the paracellular permeability of hydrophilic macromolecules across rabbit nasal epithelium in vitro, Pharmceutical Research 20 (2003) 153 160. 50 T.W. Prow, J.E. Grice, L.L. Lin, R. Faye, M. Butler, W. Becker, E.M.T. Wurm, C. Yoong, T.A. Robertson, H.P. Soyer, M.S. Roberts, Nanoparticles and microparticles for skin drug delivery, Advanced Drug Delivery Reviews 63 (2011) 470 491. 51 P. Desai, R.R. Patlolla, M. Singh, Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery, Molecular Membrane Biology 27 (2010) 247 259. 52 G. Cevc, D. Gebauer, J. Stieber, A. Schatzlein, G. Blum, Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin, Biochimica et Biophysica Acta 1368 (1998) 201 215. 53 G. Cevc, U. Vierl, Nanotechnology and the transdermal route A state of the art review and critical appraisal, Journal of Controlled Release 141 (2010) 277 299. 54 G. Cevc, H. Richardsen, Lipid vesicles and membrane fusion, Advanced Drug Delivery Reviews 38 (1999) 207 232. 55 G.Cevc, Drug delivery across the skin, Expert Opinion on Investigational Drugs 6 (1997) 1887 1937. 56 G. Cevc, G. Blume, Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force, Biochimica et Biophysica Acta-Biomembranes 1104 (1992) 226 232. 57 J. Leeuw, H.C. Vijlder, P. Bjerring, H.A.M Neumann, Liposomes in dermatology today, Journal of the European Academy of Dermatology and Venereology 23 (2009) 505 516. 58 J. A. Bouwstra, P. L. Honeywell-Nguyen, G. S. Gooris, M. Ponec, Structure of the skin barrier and its modulation by vesicular formulations, Progress in Lipid Research 42 (2003) 1 36. 59 P.L. Honeywell-Nguyen, J.A. Bouwstra, Vesicles as a tool for transdermal and dermal delivery, Drug Discovery Today: 47

2 Technologies 2 (2005) 67 74. 60 M. M. A. Elsayed, O. Y. Abdallah, V. F. Naggar, N. M. Khalafallah, Lipid vesicles for skin delivery of drugs: Reviewing three decades of research, International Journal of Pharmaceutics 332 (2007) 1 16. 61 M. Foldvari, M.E. Baca-Estrada, Z. He, J. Hu, S. Attah-Poku, M. King, Dermal and transdermal delivery of protein pharmaceuticals: lipid-based delivery systems for interferon!, Biotechnology and Applied Biochemistry 30 (1999) 129 137. 62 S. Jung, N. Otberg, G. Thiede, H. Richter, W. Sterry, S. Panzner, J. Lademann, Innovative Liposomes as a Transfollicular Drug Delivery System: Penetration into Porcine Hair Follicles, Journal of Investigative Dermatology 126 (2006) 1728 1732. 63 V. Mishra, S. Mahor, A. Rawat, P. Dubey, P. N. Gupta, P. Singh, S. P. Vyas, Development of novel fusogenic vesosomes for transcutaneous immunization, Vaccine 24 (2006) 5559 5570. 64 M. Goto, N. Kamiya, M. Miyata, F. Nakashio, Enzymatic Esterification by Surfactant-Coated Lipase in Organic Media, Biotechnology Progress 10 (1994) 263 268. 65 M. Goto, M. Goto, N. Kamiya, F. Nakashio, Enzymatic interesterification of triglyceride with surfactant-coated lipase in organic media, Biotechnology and Bioengineering 45 (1995) 27 32. 66 N. Kamiya, M. Goto, F. Nakashio, Surfactant-coated lipase suitable for the enzymatic resolution of menthol as a biocatalyst in organic media, Biotechnology Progress 11 (1995) 270 275. 67 N. Kamiya, E. Murakami, M. Goto, F. Nakashio, Effect of Using a Co-Solvent in the Preparation of Surfactant-Coated Lipases on Catalytic Activity in Organic Media, Journal of Fermentation and Bioengineering 82 (1996) 37 41. 68 M. Goto, S. Noda, N. Kamiya, F. Nakashio, Enzymatic resolution of racemic ibuprofen by surfactant-coated lipases in organic media, Biotechnology Letters 18 (1996) 839 844. 69 S. Noda, N. Kamiya, M. Goto, F. Nakashio, Enzymatic polymerization catalyzed by surfactant-coated lipases in organic media, Biotechnology Letters 19 (1997) 307 309. 70 N. Kamiya, M. Goto, How is enzymatic selectivity of menthol esterification catalyzed by surfactant-coated lipase determined in organic media?, Biotechnology Progress 13 (1997) 488 492. 71 K. Abe, M. Goto, F. Nakashio, Surfactant-Chymotrypsin Complex as a Novel Biocatalyst in Organic Media, Journal of Fermentation and Bioengineering 83 (1997) 555 560. 72 K. Abe, T. Kawazoe, S. Okazaki, M. Goto, F. Nakashio, Peptide synthesis by surfactant-chymotrypsin complexes in organic media, Biotechnology Techniques 11 (1997) 25 29. 73 N. Kamiya, S. Okazaki, M. Goto, Surfactant-horseradish peroxidase complex catalytically active in anhydrous benzene, Biotechnology Techniques 11 (1997) 375 378. 74 S. Okazaki, N. Kamiya, M. Goto, F. Nakashio, Enantioselective esterification of glycidol by surfactant-lipase complexes in organic media, Biotechnology Letters 19 (1997) 541 543. 75 S. Okazaki, N. Kamiya, K. Abe, M. Goto, F. Nakashio, Novel preparation method for surfactant-lipase complexes utilizing water in oil emulsions, Biotechnology and Bioengineering 55 (1997) 455 460. 76 S. Okazaki, N. Kamiya, M. Goto, Application of novel preparation method for surfactant-protease complexes catalytically active in organic media, Biotechnology Progress 13 (1997) 551 556. 77 N. Kamiya, S. Furusaki, M. Goto, Peroxidase activity and stability of surfactant-heme complex in nonaqueous media, Biotechnology Letters 19 (1997) 1015 1018. 78 S. Okazaki, K. Abe, M. Goto, F. Nakashio, Preparation of surfactant-enzyme complex utilizing water-in-oil emulsion, Kagaku Kogaku Ronbunshu 23 (1997) 607 609. 79 S.Y. Huang, H.L. Chang, M. Goto, Preparation of surfactant-coated lipase for the esterification of geraniol and acetic acid in organic solvents, Enzyme and Microbial Technology 22 (1998) 552 557. 80 N. Kamiya, M. Goto, S. Furusaki, Surfactant-histidine-heme ternary complex as a simple artificial heme enzyme in organic media, Biotechnology and Bioengineering 64 (1999) 502 506. 81 N. Kamiya, M. Inoue, M. Goto, N. Nakamura, Y. Naruta, Catalytic and structural properties of surfactant-horseradish peroxidase complex in organic media, Biotechnology Progress 16 (2000) 52 58. 82 S. Okazaki, Y. Uchimura, M. Goto, S. Furusaki, Surfactant-lactoperoxidase complex catalytically active in organic media, Biochemical Engineering Journal 6 (2000) 103 107. 83 S. Okazaki, M. Goto, S. Furusaki, H. Wariishi, H. Tanaka, Preparation and catalytic performance of surfactant-manganese peroxidase-mnii ternary complex in organic media, Enzyme and Microbial Technology 28 (2001) 329 332. 84 N. Kamiya, T. Nagamune, Effect of water activity control on the catalytic performance of surfactant-arthromyces ramosus peroxidase complex in toluene, Biochemical Engineering Journal 10 (2002) 55 59. 85 J. Michizoe, Y. Uchimura, T. Maruyama, N. Kamiya, M. Goto, Control of water content by reverse micellar solutions for peroxidase catalysis in a water-immiscible organic solvent, Journal of Bioscience and Bioengineering 95 (2003) 425 427. 86 J. Michizoe, Y. Uchimura, H. Ichinose, T. Maruyama, N. Kamiya, H. Wariishi, S. Furusaki, M. Goto, Activation of manganese peroxidase in an organic medium using a mediator, Biochemical Engineering Journal 19 (2004) 43 46. 87 S. Okazaki, M. Goto, H. Wariishi, H. Tanaka, S. Furusaki, Characterization and catalytic property of surfactant-laccase complex in organic media, Biotechnology Progress 16 (2000) 583 588. 88 J. Michizoe, H. Ichinose, N. Kamiya, T. Maruyama, M. Goto, Biodegradation of phenolic environmental pollutants by a surfactant-laccase complex in organic media, Journal of Bioscience and Bioengineering 99 (2005) 642 647. 89 S. Okazaki, M. Goto, S. Furusaki, Surfactant-protease complex as a novel biocatalyst for peptide synthesis in hydrophilic organic solvents, Enzyme and Microbial Technology 26 (2000) 159 164. 48

2 90 T. Maruyama, T. Kotani, H. Yamamura, N. Kamiya, M. Goto, Poly(ethylene glycol)-lipase complexes catalytically active in fluorous solvents, Organic and Biomolecular Chemistry 2 (2004) 524 527. 91 T. Maruyama, H. Yamamura, T. Kotani, N. Kamiya, M. Goto, Poly(ethylene glycol)-lipase complexes that are highly active and enantioselective in ionic liquids, Organic and Biomolecular Chemistry 2 (2004) 1239 1244. 92 M. Goto, T. Maruyama, N. Kamiya, Poly(ethylene glycol)-lipase complex highly active in ionic liquids, AIChE Annual Meeting, Conference Proceedings (2004) 8711 8715. 93 T. Maruyama, S. Nagasawa, M. Goto, Poly(ethylene glycol)-lipase complex that is catalytically active for alcoholysis reactions in ionic liquids, Biotechnology Letters 24 (2002) 1341 1345. 94 H. Sawae, A. Sakoguchi, F. Nakashio, M. Goto, Surfactant-lipase complexes immobilized in PEG microspheres, Journal of Chemical Engineering of Japan 35 (2002) 677 680. 95 H. Sawae, A. Sakoguchi, F. Nakashio, M. Goto, Important factors affecting enzymatic functions of PEG microspheres containing lipase complexes, Journal of Chemical Engineering of Japan 38 (2005) 54 59. 96 E. Miyako, T. Maruyama, N. Kamiya, M. Goto, Highly enantioselective separation using a supported liquid membrane encapsulating surfactant-enzyme complex, Journal of the American Chemical Society 126 (2004) 8622 8623. 97 E. Miyako, T. Maruyama, N. Kamiya, M. Goto, A supported liquid membrane encapsulating a surfactant-lipase complex for the selective separation of organic acids, Chemistry-A European Journal 11 (2004) 1163 1170. 98 E. Miyako, T. Maruyama, F. Kubota, N. Kamiya, M. Goto, Optical resolution of various amino acids using a supported liquid membrane encapsulating a surfactant-protease complex, Langmuir 21 (2005) 4674 4679. 99 S. Egusa, T. Kitaoka, M. Goto, H. Wariishi, Synthesis of cellulose in vitro by using a cellulase/surfactant complex in a nonaqueous medium, Angewandte Chemie-International Edition 46 (2007) 2063 2065. 100 S. Egusa, S. Yokota, K. Tanaka, K. Esaki, Y. Okutani, Y. Ogawa, T., Kitaoka, M. Goto, H. Wariishi, Surface modification of a solid-state cellulose matrix with lactose by a surfactant-enveloped enzyme in a nonaqueous medium, Journal of Materials Chemistry 19 (2009) 1836 1842. 101 K. Esaki, S. Yokota, S. Egusa, Y. Okutani, Y. Ogawa, T. Kitaoka, M. Goto, H. Wariishi, Preparation of lactose-modified cellulose films by a nonaqueous enzymatic reaction and their biofunctional characteristics as a scaffold for cell culture, Biomacromolecules 10 (2009) 1265 1269. 102 S. Egusa, T. Kitaoka, K. Igarashi, M. Samejima, M. Goto, H. Wariishi, Preparation and enzymatic behavior of surfactant-enveloped enzymes for glycosynthesis in nonaqueous aprotic media, Journal of Molecular Catalysis B: Enzymatic 67 (2010) 225 230. 103 E. Toorisaka, H. Ono, K. Arimori, N. Kamiya, M. Goto, Hypoglycemic effect of surfactant-coated insulin solubilized in a novel solid-in-oil-in-water (S/O/W) emulsion, International Journal of Pharmaceutics 252 (2003) 271 274. 104 H. Piao, N. Kamiya, J. Watanabe, H. Yokoyama, A. Hirata, T. Fujii, I. Shimizu, S. Ito, M. Goto, Oral delivery of diclofenac sodium using a novel solid-in-oil suspension, International Journal of Pharmaceutics 313 (2006) 159 162. 105 67 2003 696 698. 106 Membrane 29 2004 98 104. 107 2004 137 148. 108 E. Toorisaka, M. Hashida, N. Kamiya, H. Ono, Y. Kokazu, M. Goto, An enteric-coated dry emulsion formulation for oral insulin delivery, Journal of Controlled Release 107 (2005) 91 96. 109! 50 2005 924 928. 110 S/O 42 2006 823 828. 111 H. Piao, A. Hirata, H. Yokoyama, T. Fujii, I. Shimizu, S. Ito, N. Kamiya, M. Goto, Reduction of gastric ulcerogenicity during multiple administration of diclofenac sodium by a novel solid-in-oil suspension, Pharmaceutical Development and Technology 12 (2007) 321 325. 112 H. Yoshiura, M. Hashida, N. Kamiya, M. Goto, Factors affecting protein release behavior from surfactant-protein complexes under physiological conditions, International Journal of Pharmaceutics 338 (2007) 174 179. 113 43 2007 351. 114 H. Yoshiura, Y. Tahara, M. Hashida, N. Kamiya, A. Hirata, T. Fujii, M. Goto, Design and in vivo evaluation of solid-in-oil suspension for oral delivery of human growth hormone, Biochemical Engineering Journal 41 (2008) 106 110. 115 E. Toorisaka, K. Watanabe, H. Ono, M. Hirata, N. Kamiya, M. Goto, Intestinal patches with an immobilized solid-in-oil formulation for oral protein delivery, Acta Biomaterialia in press (2011), doi:10.1016/j.actbio.2011.09.023. 116 H. Piao, N. Kamiya, A. Hirata, T. Fujii, M. Goto, A novel solid-in-oil nanosuspension for transdermal delivery of diclofenac sodium, Pharmaceutical Research 25 (2008) 896 901. 117 Solid-in-Oil Membrane 34 2009 227 232. 118 H. Piao, N. Kamiya, F. Cui, M. Goto, Preparation of a solid-in-oil nanosuspension containing l-ascorbic acid as a novel long-term stable topical formulation, International Journal of Pharmaceutics 420 (2011) 156 160. 119 Y. Tahara, S. Honda, N. Kamiya, H. Piao, A. Hirata, E. Hayakawa, T. Fujii, M. Goto, A solid-in-oil nanodispersion for transcutaneous protein delivery, Journal of Controlled Release 131 (2008) 14 18. 120 Y. Tahara, K. Namatsu, N. Kamiya, M. Hagimori, S. Kamiya, M. Arakawa, M. Goto, Transcutaneous immunization by a 49