2 p T, Q



Similar documents
m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

24.15章.微分方程式

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

i 18 2H 2 + O 2 2H 2 + ( ) 3K

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

30

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A


1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1


I 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

i

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

i

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B


simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

genron-3

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

master.dvi

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

C:/KENAR/0p1.dvi

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1


b3e2003.dvi

lecture

Part. 4. () 4.. () Part ,


pdf

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

DVIOUT

i


応力とひずみ.ppt

A

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

1.5.1 SI kg, m, s ,,

(A2) , 0,

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

Untitled


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

KENZOU

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq


(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

1

II 2 II

v er.1/ c /(21)

2009 June 8 toki/thermodynamics.pdf ) 1

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

slide1.dvi


5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

Transcription:

270 C, 6000 C,

2 p T, Q

p: : p = N/ m 2 N/ m 2 Pa : pdv p S F

Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J

du = Q pdv U ( ) Q pdv

2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x = x 0 z z 0 = k(x 0, y 0 ) (x x 0 ). k k(x 0, y 0 ) = lim h 0 f(x 0 + h, y 0 ) f(x 0, y 0 ) (x 0 + h) x 0 k(x 0, y 0 ) = f x f x x x = x 0 z = f(x 0, y) y y = y 0 z z 0 = ( f y ) (y y 0)

z = f(x, y) (x 0, y 0 ) x 0 y 0 z z 0 = ( f x )(x x 0) + ( f y )(y y 0). dz = f f dx + x y dy a(x, y)dx + b(x, y)dy a y = b x, df = a(x, y)dx + b(x, y)dy

df (c,d) (a,b) df = f(c, d) f(a, b) (c,d) (c,d) = = 0 (a,b) (a,b) f

Q Q dq Q

: Q T c: 1 K Q c = Q T. c = dq dt. c V = ( Q T ) V, c p = ( Q T ) p C: M C = cm 1 kg 1 g J g 1 K 1

, g, cal 1 cal = 4.18 J g kg cal J 1 mol specific( ) J mol 1 K 1 1 mol 1 1

:, Extensive. 1 mol 1 g :, Intensive. =

p = nkt. p T k = 1.38 10 23 J K 1. ( ) kt ( ) n V N n = N V.

1 N A = 6.02 10 23 / mol( ) : u = 1.66 10 27 kg. u : 12 C 12uN A = 12 g/ mol. µ m u µ = m/u. 1., N A µ g : g/ mol SI kg/ mol 1 1 g. H 2 2 g.

ρ: m n = ρ m., p = ρ k m T v:. v = 1 ρ., pv = k m T. 1 N A = 6.02 10 23 mol 1 ν(ν = mol) V, n = N Aν V., pv = νrt R = N A k = 8.31 J mol 1 K 1

U V du = C V dt C V. U = 3N 1 2kT, (N,3 3 3. 3N ). : 1 c p c v = k 1 C P C V = R = N A k. N A k, R γ = C P = n + 2, n ( C V n 1 n = 3)

: du = Q pdv, ( U V ) T = 0, C p C V = νr, C. ν wiki P V = f(t ).

P V P V = νrt

du = Q pdv. dv = 0 du = Q. C V = ( Q T ) V = ( U T ) V. ( U T ) P = ( Q T ) P P ( V T ) P, C P = ( Q T ) P = ( U T ) P + P ( V T ) P V = V (T, P ) C P = ( U T ) V + ( U V ) T ( V T ) P + P ( V T ) P C P C V = ( U V ) T ( V T ) P + P ( V T ) P

( U V ) T = 0 C P C V = P ( V T ) P P V = f(t ) P ( V T ) P = df dt df dt = C P C V df dt = νr T = 0 f = 0 P V = f(t ) = νrt.

1 mol 1 mol U, 1 mol V, C V, C p du pdv du = pdv du = C V dt. C V dt = pdv

pv = N A kt dt = N 1 A k (pdv + V dp) C V (pdv + V dp) = pdv N A k C p C V = kn A C V C p C V (pdv + V dp) = pdv γ = C p C V 1 (pdv + V dp) + pdv = 0 γ 1 γ dv V + dp p = 0 pv γ =

( )

A B: B C: C D: D A: A p A isothermal T 1 B D T 2 Boyle s law adiabatic Poisson s law C V :

? Q +, W + Q 1 + Q 2 + W = 0. Q 1 T 1 + Q 2 T 2 = 0..

ds = Q T Q, Q dq Q S S,, ds

27 C, 37 C 1000 J W T 1 = 300 K Q 1 = 1000 J T 2 = 310 K Q 2 Q 1 T 1 + Q 2 T 2 = 0 Q 1 + Q 2 + W = 0 W = Q 1 Q 2 = Q 1 + T 2 T 1 Q 1 = T 2 T 1 T 1 Q 1 = 10 K 300 K 103 J = 33 J.

M V S exteisive ( intensive( Q Q 2 Mpemba 50 C 90 C

1 J = k K K T = 273.16 K k = 1.38 10 23 J K 1 k x C = (273.15 + x) K 0.01 C, 99.974 C ( )

T 1 T 2,,,,, Q ds = Q 1 T 1 + Q 2 T 2 = 0

W, Q 1 + Q 2 = W η η = η = W Q 1 = T 1 T 2 T 1.

: F (, ) F = λ dt dx. λ 10 km : ( ) ( )

1. 2. 3. : 1 1 2kT 1. (distribution) ρ(v x, v y, v z ) 2. f f f = f(v x, v y, v z ) ρ(v x, v y, v z )dv x dv y dv z 1 = ρ(v x, v y, v z )dv x dv y dv z

1. v x, v y, v z 2. v 2 = vx 2 + v2 y + v2 z ρ = (aπ) 1 3e v2 a., a v 2 = 1 (aπ) 3 v2 e v2 a 4πv 2 dv = 3 2 a, 1 2 mv2 = 1 2 m(v2 x + v2 y + v2 z ) = 3 2 kt a = 2kT m. : ρ = ( m 1 2πkT )3 e 2 mv2 kt

Maxwell : 2 x y ρ(x, y)dxdy = f(x)dx f(y)dy ρ(x, y)dxdy = g(r, θ)rdrdθ g(r, θ) θ g(r, θ) = g(r). f(x)f(y) = g( x 2 + y 2 ) y = 0 f(x)f(0) = g(x) g( x 2 + y 2 ) = f( x 2 + y 2 )f(0). log f(x) f(0) + log f(y) f(0) = log f( x 2 + y 2 ) f(0)

log f(x) f(0) = αx2, f(x) e αx2 2 E ρ(e)de 2 ρ(e) = ρ(e 1 ) ρ(e 2 ) E E = E 1 + E 2. ρ(e) = ae E kt 3:

L m N x v 1 v 2L. 1 1 2mv. 2mv ( ) v 2mv 2L N p = mv 2 N L 3. 1 2 mv2 = 1 2 kt. p = N L 3kT