main.dvi



Similar documents
untitled

untitled

2 2. : ( Wikipedia ) photoelectric effect photoelectron ν E = hν h ν > ν E = hν hν W = hν

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

24.15章.微分方程式

1: USERS MUSES-C km km H-2A 2

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

有機性産業廃棄物の連続炭化装置の開発


46 Y Y Y Y 3.1 R Y Figures mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y Y Figure 5-

untitled

チュートリアル:ノンパラメトリックベイズ

A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

A. Fresnel) (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) (G. Galilei)

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a πk 1 ɛ 0 ɛ 0 (perm

0「

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

) km 200 m ) ) ) ) ) ) ) kg kg ) 017 x y x 2 y 5x 5 y )

Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

genron-3

2

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

CAT. No. 1154b 2008 C-9

Note5.dvi

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

untitled

Microsoft PowerPoint - 山形大高野send ppt [互換モード]



Note.tex 2008/09/19( )

dbf-f6.dvi

untitled

A A. ω ν = ω/π E = hω. E

J. Jpn. Inst. Light Met. 65(6): (2015)

一般演題(ポスター)

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation)

2015 < ITS > 2

07.報文_及川ら-二校目.indd

基礎数学I

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

サイバニュース-vol134-CS3.indd

mt_4.dvi

; 200 µs 0 1 ms 4 exponential 80 km m/s 10 km 1 ms 5 E k N = e z/h n 6 ; N, H n :, z: ( ) t ρ + (σe) = 0 E σ 1 σ σ σ e e (1/H e+1/h n )

untitled

ha ha km2 15cm 5 8ha 30km2 8ha 30km2 4 14

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU SPring

CRA3689A

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

. km. km. km

320DRR…J…^_0728

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

untitled

2301/1     目次・広告

J表紙.dpt

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 の

untitled

LD

jigp60-★WEB用★/ky494773452500058730

プログラム


基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


genron-7


2012 September 21, 2012, Rev.2.2

: , 2.0, 3.0, 2.0, (%) ( 2.


スライド タイトルなし

宇宙科学研究所報告

F8302D_1目次_ doc

December 28, 2018

PEFC 1 6 PEFC % CO FC FC 36 LHV 10 FC 1 DSS 8 8.5kW FC 342


.. p.2/5

5. 5.1,, V, ,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 3-1, 2-2, 1-3,,, L1, L3, L2, ,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1

Part. 4. () 4.. () Part ,

平成18年度弁理士試験本試験問題とその傾向

PBS: Post-Boost Stage JAXA

untitled

安川省エネユニット 電源回生ユニット R1000

36 th IChO : - 3 ( ) , G O O D L U C K final 1

C:/KENAR/0p1.dvi

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

( ) ± = 2018

A

アナログ・デジタルの仕様とパフォーマンス特性の用語集

空気の屈折率変調を光学的に検出する超指向性マイクロホン

PowerPoint Presentation

橡平成12年度バイオマス発電等の実態調査(HP版).PDF

1 1 ( ) ( % mm % A B A B A 1

= = = = = = 1, 000, 000, 000, = = 2 2 = = = = a,

x : = : x x

J表紙.dpt

林野火災の有効な低減方策検討会報告書

Microsoft Word - 学士論文(表紙).doc

untitled

Transcription:

17 ε -SAT Electric PropulSIon system Loading moon transfer Orbit Navigation SATellite 1 1.1, Copyright: ESA 1: SMART-I 1.2 10 ESA SMART-I( 1 ) JAXA( 2 ) JAXA ESA BepiColombo( 3 ) 1 2: 3: BepiColombo Copyright: JAXA 1

1.3 SMART-I BepiColombo SMART-I 1.4 () 1.5 Electric P ropulsion system Loading moon transfer Orbit Navigation SATellite epsilon SAT,ε SAT() ε(epsilon) moon mars mercury ε SAT 2

2 2.1 2.2 2 30[mN/kW] 50[W] 1.5[mN] mn (JPL) miniaturexenon Ion (MiXI) thruster 2000[s]3000[s] 70[]. 1 MiXI 1: [mm] 30 [s] 2000-3000 [W] 13-50 [mn] 0.01-1.5 [kg] 0.2 4: MiXI MiXI 2 2 2.3 () () 5 3

5:. 18[deg] 12[deg] (3.2.1 ) (3.2.2 ) e =0.9459 () (3.2.3 ) (3.2.4 ) (3.2.5 ) (3.2.6 ) 36000[km]. 2.4, 1 4

x ()x z ()x z y () 180[deg] 1 1 2.5 3 326000[km] 300000[km] 300000[km] 66000[km] J2 () 3.1 RARR(Range And Range Rate) RARR(Range And Range Rate) RARR RARR 2 6 3 3.2 6 3.2.1 phase 1() 70% 2[deg] 3.2.2 phase 2() 5

300000[km] 3.3 SELENE 2: 3.2.3 phase 3() L1 300[h](12.5[day]) [-] 0.9459 [km] 123172 [deg] 30.0 [deg] 352.0 [deg] 0.0 [deg] 0.0 UTC+9 [-] 2015 2 6 12 L1 3.2.4 phase 4. 3.2.5 phase 5 phase4 3.2.6 phase 6 3.4 xyz 1[mN] 2000[s] 3.4.1 () phase1 phase3 6 3.4.2 L1 (phase3) 7 L1 10000km 3.4.3 phase4 8 3.4.4 phase5 9 6

6: 7: 7

8: 9: 8

3.4.5 () 10 682[day] 36000[km] 32900[km] 4 4.. 0.3[deg] 3.5 11 3 11 3 700[day] 2.9[kg] 7894[h] 1000015000[h] 3.6 MiXI 1.5[mN] 1.0[mN] RARR RARR 0.3[deg] 4.2 0.3[deg],,,. 4.1 120000300000[km], 0.800.94,,,, 3 4 4 57.4[deg] 4.2,, 4 PD Range And Range Rate 9

10: 3: phase 1 2 3 4 5 6-1 6-2 total [g] 222 865 477 204 330 722 79 2900 [m/s] 92 364 204 87 143 316 35 1240 5 0.3[deg],. n w = k p V (q ˆBB )+k d( ωˆ B ω B ) 4: [deg] 0.02 0.05 0.1 0.1 0.1 0.1 0.14 0.17 n w : q ˆBB : V (q ˆBB ) : ωˆ B : ω B : k p : P (= 0.04) k d : D (= 0.4) 10

11: 5: [deg] 0.14 0.17 0.1 0.1 0.01 0.01 0.17 0.20 4.3 7. () [], 11

,, 3, ()[phase 1,2,3,6] ()[phase 1,2,3,6], () () [phase 3] 300 [phase 4,5], [ phase] [ phase], HK 4.4 a = 123172[km]e =0.94 0 4.4.1 T o T r T t 3 0 T o = I y f 0 0 = 2Iyµe r sin f 3 0 T r = = 0 I yp f 0 T t = F th 0 2I ypµe r sin f 3 0 l x l z l y 12

I y : y (= 2[kgm 2 ]) μ : (= 3.86 10 5 [km 3 /s 2 ]) r : f : I yp : y (= 0.1[kgm 2 ]) F th : (= 1[mN]) l i : i (l x =0.01[mm], l y = 1[mm], l z = 1[mm]) T o T r T t 12 1 I x : x (= 2[kgm 2 ]) I z : z (= 2[kgm 2 ]) F s : (= 5.58[mN]) M : (= 8 10 25 [emu]) D : (= 20[polem]) ρ : 280[km] (= 4.3 10 11 [kg/m 3 ]) S : (= 1.25[m 2 ]) C D : (= 2.2) 13 1 14 x 10 4 3 x 10 6 12 T environmentalx T environmentaly Inner disturbance [Nm] 2.5 2 1.5 1 0.5 T innerx T innery T innerz Outer disturbance [Nms] 10 8 6 4 2 T environmentalz 0 0 0.5 1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5 time [s] x 10 12: (a=123172[km]e=0.94) 2 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5 time [s] x 10 13: (a=123172[km]e=0.94) 4.4.2 T g T s T m T a 4 (I z I y )θ x T g = 3f 2 (I z I x )θ y 0 F s l y sin ft T s = F s (l x sin ft + l z cos ft) F s l y cos ft 1 1 1 T a = 1 ( 2μ 2 ρ r μ ) 0 SC D l a z 7 MD T m = 2 10 r 3 4.5 4.5.1 I d dt ω B + 4 n wi ẑ wi + ωh T = n D i=1 I wi {( d dt ω B ) ẑ wi + d } dt ω wi = n wi l y 13

I : d dt ω B : ẑ wi : n wi : ω : h T : n D : I wi : (= 0.0008[kgm 2 ]) ω wi : quaternion 1.5 q1 q2 q3 1 q4 0.5 0 0.5 1 1.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5 time [s] x 10 14: n wi 4 n wi ẑ wi = n w i=1 0.08 0.06 h x h y h z n w n wi n wi () h x,h y,h z [Nms] 0.04 0.02 0 0.02 0.04 0.06 0.08 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5 time [s] x 10 4.5.2 15: () 180[deg] 1 1 14, 15, 16 16 h T h T [Nms] 0.12 0.1 0.08 0.06 0.04 0.02 h T 4.6 4.6.1 (CSSFSS) 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5 time [s] x 10 16: 14

2 (CSS) AERO ASTRO Course Sun Sensor 1 (FSS) Optical Energy Technologies Model 0.05 2 67 17,18 18: FSS AERO ASTRO Miniature Star Tracker 8 19 17: CSS 6: (CSS) [deg] 120 [deg] ±5(1 ) [kg] 0.01 [mm] φ22.86 8.99 [W] 0 [] -40 to 93 7: (FSS) [deg] 100 [deg] ±0.05(2 ) [kg] 0.040 [mm] φ40 15 [W] 0.05 [] -30 to 80 4.6.2 (ST) 3 19: Star Tracker 4.6.3 (FOG) KVH DSP-3000 9 20 4.7 4.7.1 (RW) SURREY Microwheel 10SP-M 10 21 15

11: () () CSS FSS ST FOG RW PRM IE 8: (ST) [deg] 45 [arcsec] ±70(3 ) [-] 4 [Hz] 2 [deg/s] 10 [kg] 0.475() [mm] 80 110 60 [V] 28 [W] 2 [] -30to60 21: 10: (RW) 20: 9: (FOG) [deg/s] ±375 [kg] 0.27 [mm] 88.9 58.42 33.02 [V] 5 [W] 3 [] -40 to 75 [Nms] 0.42 [mnm] 10 [kgm 2 ] 0.0008 [rpm] ±5000 [Hz] 5 [kg] 0.96 [mm] φ100 90 [V] 32 [W] 3.5 [] -20-50 16

4.7.2 11 PRM IE 4.8 12 12: CSS FSS FSS CSS ST FSS FOG(3 ) FOG(2 ) ST RW(4 ) RW(3 ) PRM(2 ) PRM(1 ) IE(2 ) IE(1 ) 14: Al A2024-T3 [mm] 0.25 Al 1/8-5052-.001 [mm] 9.5 Al A7075-T6 CFRP 15 5.3 3.0[kg] 16: - 131.29 [K] 289.73 [] 16.6 [MPa] 5.838 [g/cc] 1.110 [ppm] 0.087 5 22,23 5.1 460 500 450 [mm] 2830 500 450 [mm] 47.4 [kg] 24,25,26 13 5.2 14 15 ( 24 ) t, P, r σ β t t = Prβ 2σ M tank ρ tank r M tank = 4πr 2 tρ tank = 2πr2 Pβρ tank σ M pp M pp /M tank ρ pp M pp = 4πr3 3 ρ pp M pp M tank = 2σ ρ pp 3βρ tank P ρ tank /P 17

22: 23: 18

24: 25: 2 19

13: [mm] [kg] 4 Microwheel 10SP-M 100 90 0.96 4 4 100 58 82 0.18 4 1 Miniature Star Tracker 76.2 76.2 110 0.475 1 Course Sun Sensor 22.86 8.99 0.01 2 Sun Sensor model 0.05 40 15 0.04 2 3 DSP-3000 88.9 58.42 33.02 0.27 3 TXE430MFM-211A 100 31.2 10.5 0.044 RXE430M-301A 60 50 10.5 0.038 CPU SEMC5071B 52 52 55 1.7-7 340 0.01 2 120 120 90 1 2 2 120 56 90 0.29 90 90 150 4 2 92 60 0.7 2 4 ( 0.75kg ) Sφ106 1.14 4 124 UR18650F 18.05 64.7 0.047 124 XTJ Solar Cells 20 20 0.14 0.000336 - - 0.0002 A2 -(, ) 452 450 2 1.58 B2 -(, ) 410 450 2 1.43 DC-DC TPS40210 3 5 1 0.001 4-100 50 5 0.1 4-380 380 10 0.298 2-400 425 10 0.35 2-380 425 10 0.331-380 425 10 0.334-380 380 10 0.263 4-235 405 10 0.197 4-225 50 0.03 A2-460 460 4 1.3 2 B2-470 460 4 1.18 2 2-247 4 4 0.0126 2 4-14 460 10 0.1 4 2-50 50 70 0.5 2-15 10 10 0.01 8 - - 2 47 20

26: 2 15: Al A2024-T3 A7075-T6 [kg/m 3 ] 2700 2800 [GPa] 72.398 71 [GPa] 27.6 26.9 [-] 0.33 0.33 [MPa] 324.1 482.7 [MPa] 268.9 475.8 Al 1/8-5052-.001 [kg/m 3 ] 72 [GPa] 0.44 [MPa] 2.4 CFRP [deg] 0 90 [kg/m 3 ] 1600 [GPa] 343 6 [MPa] 67 [MPa] 1863 29 21

50[] P 11.3[MPa] 1.4[g/cc] 17 M pp /M tank 17: [g/cc] 4.42 [GPa] 1 [] 10 15% β 2 11% M tank =0.75[kg] r=50.4[mm] β 2 t=0.058[mm] r=51[mm]t=2[mm] 5.4.3 29 5.4 29: 5.4.1 27 27 28 90[deg] A 180[deg] 2 1 5.4.2 5.4.4 5.5 Pro Engineer / Mechanica H2A 18 1. 500[g] 2.. 3. 22

27: 28: 23

18: 30[Hz] 10[Hz] 3.2[G] 1.8[G] 0.1[G] 1.8[G] MECO 4.0[G] 0.5[G] 1.0[G] 1.0[G] 5.5.1 1920. 19: x[mm] y[mm] z[mm] -239-0.024-0.672 20: I x [kgm 2 ] I y [kgm 2 ] I z [kgm 2 ] 1.83 1.45 1.81 4.65 1.70 4.18 5.5.2 30 289[Hz], 5.5.3 18 4[G] 1.8[G] 1.5 6[G] 2.7[G] 31 Al Al 13.4[MPa] 15 268.9[MPa] MS MS = 1=19.1 6 6.1 0.1 [kg] Power Control Unit(PCU) 21 70-100[V] DC-DC () 6.2 SANYO UR18650F 24

30: 31: 25

21: [V] [W] 5V 2 5 0.1 1 3 5 9 PCU 1 5 2 CPU 1 5 10 1 5 0.125 () 1 7 9.1 () 1 7 0.098 28V 2 24 12 1 28 2 4 24-36 14 2 70-100 50 1 3.7[V] 22 22: [V] 3.7 [Ah] 2.5 [g] 47 [mm] 18.05 64.7 6.3 C r = P et e C d NV d n C r P e T e C d N V d n [A h] [W] [h] DOD[ ] [] ()[V] [ ] 21 5V 28V 28[V] 8 29.6[V] 5[V] 2 7.2[V] Texas Instruments DC DC TPS40210 28[V] 21 10% 50 DOD 92% 83% N(5V ) = = N(28V ) = P e T e C d C r V d n 26.43 350/60 =18.58 < 19[] 0.83 2.5 5 0.8 17.6 350/60 =2.21 < 3[] 0.83 2.5 28 0.8 5V 19 28V 5V 38 2, 28V 6 8, 124 47 2 38 + 8 6= 5828[g] 6.4 6.6[deg] 26

SPEC- TROLAB GaInP2/GaAs/Ge next Triple Junction(XTJ) Solar Cells 23 2[cm] 2[cm] 500[ m] 23: (at 28 ) [-] 0.299 [ma/cm 2 ] 17.32 [V] 2.333 [-] 0.90 [mm] 0.14 [mg/cm 2 ] 84 [-] 0.88 [-] 0.95 [% / ] -0.286 [cm 2 ] 4.0 5V P sa (EOL)=30.79[W] 28V P sa (EOL)=96.29[W] Psa(EOL) Psa (BOL) P sa (BOL) =P (EOL)/(ηγɛ cos θ) η : γ : ɛ : θ :. 74.5[] γ (1 + 74.5 28) ( 0.286/100) = 0.867 η 0.88 0.95=0.836 θ 9[deg] ɛ 0.92 Psa(BOL) 5V P sa (BOL) =46.77[W] 28V P sa (BOL) = 146.22[W] P sa = P et e /X e + P d T d /X d T d -- 1350[W/m 2 ] 5V P sa (BOL) =0.116[m2 ] 28V P sa (BOL) =0.363[m2 ] 1 2[cm] 2[cm] P e [W] = P d [W] T e [min] = 290[](5V ) T d [min] = 908[](28V ) X e [ ] X d [ ] 308(5V )992 (28V ) Xe=0.90Xd=0.90 350 7214 0.123(5V )0.397(28V )[m 2 ] 90% = 0.138[m2 ](5V ) = 0.442[m 2 ](28V ) 27

840[g/m 2 ] 0.58[m 2 ] = 487.2[g] 1.2 7.2[V]29.6[V] 7.2 1.2 =8.64[V ]29.6 1.2 = 35.52[V ] 2.333[V] (5V )8.64/2.333 = 3.70 < 4 (28V )35.52/2.333 = 15.23 < 16 308(5V )992 (28V ) 308/4=775V 992/16=62 28V 6.5 (MDS-1) 32 GTO 26.5[%] 0.2 [%] GTO 0.01 2 7.3(= 365 2 0.01) 0.99 0.98 =0.92 6.6 6.6.1 2 1[kW] 6.6.2 32: InGaP/GaAs 2002 2 GTO 32 InGaP/GaAs (Isc) (Voc) 2 28

7 7.1. phase 285[km], 7.2 i m i c pi dt i dt = Q i ΣC ij (T i T j ) ΣR ij σ(t 4 i T 4 j ) m i : i [kg] c pi : i [W s/(k kg)] T i,t j : i, j [K] Q i : i [W] C ij : i, j [W/K] R ij : i, j [m 2 ] σ : (= 5.67 10 8 [W/(T 4 m 2 )]) 7.2.1 3. (1) Q E 1399[W/m 2 ] 1309[W/m 2 ] A Q Q s = E s Aμ μ θ μ = / sin θ (2) Q e E e 140 256[W/m 2 ] A Q e Q e = E e AF e F e R e, H e, 33, + /2 F e =cosλr 2 e/h 2 e (3) Q m 107[] 153[] Q m Q m = E m AF m F m : E m 13145.2[W/m 2 ] 5 (4) Q a 29

h ij i, j [W/(m 2 K) A ij i, j [m 2 ] 50 3000[W/(m 2 K)] 7.2.3 R ij (1) A i A j R ij R ij = ɛ i ɛ j F ij A i ɛ i,ɛ j : i, j 33: A Q a Q a = ae s AF a a 0.15 0.60 0.073 0.24 F a Bannister F - θ s cos θ s 0 F a = F cos θ s cos θ s 0 F a =0 F ij F ij =ln{(1 + x 2 )(1 + y 2 )/(1 + x 2 + y 2 )} 1 2 +y 1+x 2 arctan(y/ 1+x 2 ) +x 1+y 2 arctan(x/ 1+y 2 ) y arctan(y) x arctan(x) x = y = F ij =ln { (1 + x 2 )(1 + y 2 )/(1 + x 2 + y 2 ) } +y 2 ln { x 2 (1 + x 2 + y 2 )/(1 + y 2 )/(x 2 + y 2 ) } +x 2 ln { y 2 (1 + x 2 + y 2 )/(1 + x 2 )/(x 2 + y 2 ) } +4y arctan(1/y)+4x arctan(1/x) 4 x 2 + y 2 arctan(1/ x 2 + y 2 ) x = y = F ik = F i(j+k) F ij 7.2.2 C ij ij C ij (2) A i ɛ i C ij = h ij A ij R ij = ɛ i A i 30

24: [] [W] -20/+50 3.50( 4) -40/+93 - -30/+80 -( 2) -30/+60 2-40/+85 0.126( 3) -30/+60 9.1-30/+60 0.125-20/+50 - -150/+100-0/+45(charge) - -20/+60(discharge) - -20/+40(storage) - CPU -20/+50 10 7.3 7.3.1 24 0 45[] 10[] 10 35[] -20 50[] 10[] -10 40[] -150 100[] 10[] -140 90[] 7.3.2 25 Du Pont Kapton-HN(146448G405120) -250288[] OSR 7.3.3 34 12 4 1 2 19 34 phase1 phase3 phase4 phase1 5 19170[km] 285[km] phase1 5 50 31

25: () () 0.2mm 0.08 0.80 0.25 0.80 0.21 0.80 0.41 0.80 OSR 0.08 0.80 0.08 0.80 0.95 0.86 0.95 0.86 0.33 0.65(0.02) 0.38 0.63(0.02) 0.90 0.85 0.90 0.85 26: 1 -Z [] 25.9 23.7 2 +Y ( [] 25.6 23.5 3 -X [] 26.1 24.0 4 +X [] 26.4 24.1 5 -Y [] 25.5 23.3 6 +Z [] 26.0 23.8 7 +Z [] 58.7-222 8 -Y [] -134-216 9 [] 84.8-221 10 () [] 58.5-205 11 +Y [] -113-216 12 -Z [] 58.7-221 13 [] 26.5 24.3 14 [] 26.4 24.2 15 [] 26.3 24.2 16 [] 26.4 24.3 17 [] 58.5-205 18 [] 25.5 23.4 19 [] 25.4 23.2 32

8.2 34: 7.3.4 26 25.6 23.3[] 26.5 24.2[] 0.05[m 2 ] 0.10[m 2 ] 8 8.1 HK 8.2.1 TXE430MFM-211A RXE430M-301A 430[MHz] 120[deg] V 120[deg] V 50[] 27 27: [MHz] 435 [mm] 340 [g] 100 [dbi] 1.2 8.2.2 35 135 105 15 5[deg] 35 8656[km] 33

28: TXE430MFMCW-211A [W] 3 [W] 9.1 [V] 7 [] -30 60 [] 50 [mm] 100 31.2 10.5 [g] 44 RXE400MFM-101A [dbm] -121 [ma] 26 [V] 5 [] -30 60 [mm] 76 50 10.5 [g] 38 29 29: [m] 5 [dbi] 24.93 1 200 1 27[kbyte] 30 27[kbyte] 1080[s] 200[bps] 30: HK (3 ) (1 ) (3 ) (3 ) (3 ) RH (4 ) (4 ) IE C/N 0 C/N 0 3132 35: 8.3 8.3.1 HK 30 576[bit] 112[bit] 10[s] 1[s] 1024 1280[pixel] JPEG2000 400[kbyte] HK 9 CPU 34

31: C/N 0 [MHz] 435 401.5 [km] 6.90 10 4 7.47 10 4 EIRP [dbw] 35.7 5.97 [dbw] 11.8 4.77 [db] 0 0 [dbi] 24.9 1.2 [db] 1 0 [db] 197 197 [km] 3.86 10 5 3.86 10 5 [db] 3 3 [db] 0.44 0.44 [db] 0.1 0.1 [db] 0 0 G/T [db/k] -25.9-2.79 [db] 0 1 [dbi] 1.2 24.9 [db] 0 0 [dbk] 25.9 26.7 [K] 100 300 [K] 289 170 [K] 313 200 [db] 3 2 C/N 0 [dbhz] 42.1 34.3 [dbhz] 8.0 2.0 32: C/N 0 FM GMSK E b /N 0 [db] 10.8 10.5 [db] 2.5 2.5 [db] 5.2 5.2 [dbhz] 23.0 23.0 [db] 3 3 C/N 0 [dbhz] 42.1 34.3 35

10 10.1 CPU CPU SEMC5701B CPU 33 33: SEMC5701B CPU VR5701 250[MHz] [MByte] 16 DRAM,I/F [MByte] byter SDRAM 64 [V] +5 [mm] 52 52 55 [1] 2002 [2] 1993 [3] Wiley J.LarsonJames R.WertzSPACE MIS- SION ANALYSIS AND DESIGN1999 [4] 2007 [5] ERSDAC (Earth Remote Sensing Data Analysis Center): 4 16 3 31 [6] Tokyo Institute of Technology Lab for Space System http://lss.mes.titech.ac.jp/ssp/cubesat/ [7] 2008 10.2 OS OS OS OS OS OS OS OS TRON ITRON(TOPPERS). [8] 1969 [9] 1992 [10] 1990 [11] 2001 [12] Paul.D.spudig :The Once and Future Moon,2000 [13] γ11 2007 [14] JAXA- (MDS-1) http://www.ard.jaxa.jp/res/emmg/mds1/index.html [15] http://www.ard.jaxa.jp/info/event/pdf/exh23.pdf [16],,,, :,2003 [17] 2005 [18] 2001 [19] 2006 [20] : 2008 [21] FRANK KREITHRadiation Heat Transfer for Spacecraft and Solar Power Plant Design 1962 36