(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2



Similar documents
日本内科学会雑誌第102巻第10号

SHOBI_Portal_Manual

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

example2_time.eps

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box

あっと! デジタル ver.7



II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

dプログラム_1

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

日本内科学会雑誌第101巻第12号

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

応用数学III-4.ppt

離散最適化基礎論 第 11回 組合せ最適化と半正定値計画法

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

30

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

日本内科学会雑誌第98巻第3号

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS

0. Introduction (Computer Algebra) Z, Q ( ), 1960, LISP, ( ) ( ) 2

xy n n n- n n n n n xn n n nn n O n n n n n n n n

行列代数2010A

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

31 33

?

弾性定数の対称性について

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

hotline09_3.qxd


2 2 ( M2) ( )

J12yoko_prg.indd

13

平成28年度第1回高等学校卒業程度認定試験問題(科学と人間生活)

DSP工法.pdf


広報うちなだ2002年6月号

1 2

01-02.{.....o.E.N..


コンピュータ概論

本文/年次報告  67‐107

32号 701062/きじ1

10西宮市立中央病院/本文

北九州高専 志遠 第63号/表紙・表4

特別プログラム

Ł\”ƒ

報告書(第2回NGO‐JICA)/はじめに・目次

P-12 P P-14 P-15 P P-17 P-18 P-19 P-20 P-21 P-22

ニューガラス100/100目次

untitled

CW3_A1083D05.indd

program08.pdf


SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [

( ) ( ) 1729 (, 2016:17) = = (1) 1 1


24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

all.dvi

ver Web




Gauss

ドキュメント1

FX ) 2

FX自己アフリエイトマニュアル

#2 (IISEC)

数理.indd

II Time-stamp: <05/09/30 17:14:06 waki> ii

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

2

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

:00-16:10

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1


untitled


untitled

untitled



α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x /4 RDA 1 6 x /6 1 x 1 3 x 2 15 x (1.2) (1.3) (1.4) 1 2 (1.5) x 1

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

行列代数2010A

QW-3414

01_06.indd


外為オンライン FX 取引 操作説明書

1 2

untitled

INDEX

INDEX

Transcription:

sdmp Maple - (Ver.2) ( ) September 27, 2011 1

(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2

(II) Nehalem CPU GotoBLAS Intel CPU Nehalem CPU, GotoBLAS, Hyper-Thread technology off 3

Windows BIOS off Mac Hyper-Thread technology off Mac OS root, terminal, nvram SMT=0 OFF 4

Maple,, 4, sdmp http://www.cecm.sfu.ca/ rpearcea/ 4,? 5

4 (1) (2) (3)Cylindrical Algebraic Decomposition Projection (4)Dixon (5), 6

Dixon f(x, y) = x 2 + y 2 3, g(x, y) = xy 1 f(x, y) g(x, y) f(α, y) g(α, y) x α = ( α 1 ) y 1 1 y 3 + 3y = 0 x 1 α 7

y = λ, v = x 1, λ 1 1 λ 3 + 3λ v = 0 λ 1 1 λ 3 + 3λ = 0, y,, 3 8

(1) (2) 1 (2+3x)(14+15x) 8 9+10x 4+5x (6+7x)(14+15x) 11+12x+13x 3 (2+3x)(16+17x) 6 + 7x (2 + 3x)(4 + 5x) 8(2 + 3x)(16 + 17x) (9 + 10x)(11 + 12x + 13x 3 ) (3) a b(4 + 5x) 8c ad(11 + 12x + 13x 3 ) a = 1 2 + 3x, b = 1 6 + 7x, c = 1 9 + 10x, d = 1 16 + 17x, 9

1., O(2 n ), 2. -,???, 3.fraction-free Gauss, O(n 3 ), 4.,???, mod 5.Berkowitz, Fadeev, O(n 4 ), 10

fraction-free Gauss n n C, ĉ ( 1) 0,0 = 1, ĉ (0) i,j = C i,j, ĉ (k) i,j = (ĉ(k 1) k,k ĉ (k 1) i,j ĉ (k 1) k,j ĉ (k 1) i,k )/ĉ (k 2) k 1,k 1 k + 1 i n, k + 1 j n, k = 1,, n 1, ĉ n,n (n 1), 0,, Jacobi,, 11

fraction-free Gauss n n C, τ 0,0 ( 1) = 1, τ i,j (0) = C i,j, τ i,j (k) = (τ k,k (k 1) τ i,j (k 1) τ k,j (k 1) τ i,k (k 1) )/τ k 1,k 1 (k 2) k + 1 i n, k + 1 j n, k = 1,, n 1, τ (n 1) n,n, 0,, Jacobi,, 12

Berkowitz (I) A = T A = A r S R a r+1,r+1 1 0 0 a r+1,r+1 1 0 RS a r+1,r+1 0...... RA r 2 r S RA r 3 r S 1 RA r 1 r S RA r 2 r S a r+1,r+1 13

Berkowitz (II) [procedure Berkowitz(A)] if dim A=1 then return [1, A 1,1 ] else r (dim A) 1 Decompose A = A r S R a r+1,r+1 Compute T A [X r+1,, X 1 ] Berkowitz(A r ) [X r+2,, X 1 ] T A [X r+1,, X 1 ] return [X r+2,, X 1 ] 14

? 1., 2. - 4., 15

Resultant( ) 1.Collins subresultant 2. 3. 16

f = a 2 x 2 + a 1 x + a 0,g = b 1 x + b 0 Sylvester res x (f, g) = a 2 a 1 a 0 b 1 b 0 0 0 b 1 b 0 m n (m + n) (m + n) 17

f = a 2 x 2 + a 1 x + a 0,g = b 1 x + b 0 Bezout res x (f, g) = b 0 b 1 b 1 a 0 b 0 a 2 b 1 a 1 m n (m > n) m m 18

1., 2. - Quantifier Elimination Q.E., Cylindrical Algebraic Decomposition C.A.D., Resultant( ) 19

a 1 a 2 a 3 a 4 b 1 b 2 b 3 b 4 c 1 c 2 c 3 c 4 d 1 d 2 d 3 d 4 = +a 1 (b 2 (c 3 d 4 d 3 c 4 ) c 2 (b 3 d 4 d 3 b 4 ) +d 2 (b 3 c 4 c 3 b 4 )) b 1 (a 2 (c 3 d 4 d 3 c 4 ) c 2 (a 3 d 4 d 3 a 4 ) + d 2 (a 3 c 4 c 3 a 4 )) +c 1 (a 2 (b 3 d 4 d 3 b 4 ) b 2 (a 3 d 4 d 3 a 4 ) +d 2 (a 3 b 4 b 3 a 4 )) d 1 (a 2 (b 3 c 4 c 3 b 4 ) b 2 (a 3 c 4 c 3 a 4 ) + c 2 (a 3 b 4 b 3 a 4 )) (bottom up),! 20

- L 1 = a 4,4 a 5,5 a 4,5 a 5,4, L 2 = a 4,3 a 5,5 a 4,5 a 5,3, L 3 = a 4,3 a 5,4 a 4,4 a 5,3, L 4 = a 4,2 a 5,5 a 4,5 a 5,2, L 5 = a 4,2 a 5,4 a 4,4 a 5,2, L 6 = a 4,2 a 5,3 a 4,3 a 5,2, L 7 = a 4,1 a 5,2 a 4,2 a 5,1, L 8 = a 4,1 a 5,5 a 4,5 a 5,1, L 9 = a 4,1 a 5,4 a 4,4 a 5,1, L 10 = a 4,1 a 5,3 a 4,3 a 5,1 det(a) = +(a 1,1 a 2,2 a 1,2 a 2,1 )(a 3,3 L 1 a 3,4 L 2 + a 3,5 L 3 ) (a 1,1 a 2,3 a 1,3 a 2,1 )(a 3,2 L 1 a 3,4 L 4 + a 3,5 L 5 ) +(a 1,1 a 2,4 a 1,4 a 2,1 )(a 3,2 L 2 a 3,3 L 4 + a 3,5 L 6 ) (a 1,1 a 2,5 a 1,5 a 2,1 )(a 3,2 L 3 a 3,3 L 5 + a 3,4 L 6 ) +(a 1,2 a 2,3 a 1,3 a 2,2 )(a 3,1 L 1 a 3,4 L 8 + a 3,5 L 9 ) (a 1,2 a 2,4 a 1,4 a 2,2 )(a 3,1 L 2 a 3,3 L 8 + a 3,5 L 10 ) +(a 1,2 a 2,5 a 1,5 a 2,2 )(a 3,1 L 3 a 3,3 L 9 + a 3,4 L 10 ) +(a 1,3 a 2,4 a 1,4 a 2,3 )(a 3,1 L 4 a 3,2 L 8 + a 3,5 L 7 ) (a 1,3 a 2,5 a 1,5 a 2,3 )(a 3,1 L 5 a 3,2 L 9 + a 3,4 L 7 ) +(a 1,4 a 2,5 a 1,5 a 2,4 )(a 3,1 L 6 a 3,2 L 10 + a 3,3 L 7 ) 21

=, Lisp Lisp Hash Hash,? 22

5 5 3 3 index, 3 4 5 1 2 4 5 2 1 4 5 3 2 3 5 4 1 3 5 5 1 2 5 6 2 3 4 7 1 3 4 8 1 2 4 9 1 2 3 10 23

w[k], index, (2 3 4), c[i][j] = i j 1 n=5; i=3; u=1; b1=n-1; for(k=i;k>0;k--){ for(b2=b1;b2>=w[k];b2--){ u=u+c[b2][k]; } b1=b2-1; } 24

geobucket,, 25

, 1 heap (sdmp ) (Singular ) (f 1 + f 2 ) (g 1 + g 2 ) = f 1 g 1 + f 1 g 2 + f 2 g 1 + f 2 g 2 26

?, f = 5x 2 y + 6x + 7y + 8 (5, [2, 1]) (6, [1, 0]) (7, [0, 1]) (8, [0, 0]) 27

(heap ) X j, Y j,, m n (X 1 + X 2 + + X m )(Y 1 + Y 2 + + Y n ) = X 1 (Y 1 + Y 2 + + Y n ) + X 2 (Y 1 + Y 2 + + Y n ) + X m (Y 1 + Y 2 + + Y n ) 28

(X 1 Y 1 + X 1 Y 2 + + X 1 Y n ) + (X 2 Y 1 + X 2 Y 2 + + X 2 Y n ) + (X m Y 1 + X m Y 2 + + X m Y n ) Y 1, Y 2,, Y n,, X j,, m 29

, =m, 1,, =1, 2, 2 root,, 2, root 2, 2,, 2, 30

sdmp, 31

heap u = ( a 1 b 1 c 1 ) v = b 2 b 3 c 2 c 3 a 2 a 3 c 2 c 3 a 2 a 3 b 2 b 3 a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 = a 1 b 2 b 3 c 2 c 3 b 1 a 2 a 3 c 2 c 3 + c 1 a 2 a 3 b 2 b 3 = u v 32

u[1] v[1], u[2] v[2], u[3] v[3], u[1] v[1], u[2] v[2], u[3] v[3],, 1 33

sdmp Maple, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/susemi etc.html 1.sdmp 2. 1,, 34

sdmp sdmp, exponent vector 1 word (pack ) f = 5x 2 y + 6x + 7y + 8 (5, [2, 1]) (6, [1, 0]) (7, [0, 1]) (8, [0, 0]) 35

32bit, pack=2 16bit 16bit 2 1,, exponent vector 36

sdmp 1 + x 2 + 2x 2 + 2x 4 + 4x = 0,, 37

a 1 + a 2 x a 3 + a 4 x a 5 + a 6 x a 7 + a 8 x generic position ( ) 38

, O(n 2 ) 39

, Linear Assignment Problem 40

Hungarian algorithm 5 2 4 1 2 1 4 2 3,, Hungarian algorithm, O(n 3 ) bound cf. http://en.wikipedia.org/wiki/ Hungarian algorithm, maple, 41

1., 2. - http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/susemi etc.html 4. http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/susemi interpolation.html,, 42