4-常田.indd



Similar documents
Microsoft Word _08.doc

Wautersia eutropha OAlcaligenes eutrophus Ralstnia eutropha 16)) H16 IAM A Alcaligenes sp. IAM A Azotobacter chroococcum IAM A Methy


6_総説特集(池).indd

Decomposition and Separation Characteristics of Organic Mud in Kaita Bay by Alkaline and Acid Water TOUCH NARONG Katsuaki KOMAI, Masataka IMAGAWA, Nar

9_総説一般(高畑).indd


3-黒田.indd

Report of Special Research from the National Institute for Environmental Studies, Japan NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES

Analysis of Hypoxia Dynamics Using Pelagic and Benthic Biogeochemical Model: Focus on the Formation and Release of Hydrogen Sulfide Masayasu IRIE, Shu

畜産環境情報 < 第 56 号 > 1. 窒素を除去するアナモックス菌 畜産における可能性 2. 環境対策と野菜販売による堆肥センターの独立経営 3. 千葉県における堆肥生産 利用促進の取組み 4. 鳥取県の畜産と畜産環境対策の現状

Journal of Environmental Biotechnology Vol. 12, No. 1, 3 8, 2012 総説 ( 特集 ) メタルバイオ技術による排水からのレアメタル回収の可能性 Potential of Metal-Biotechnology on Rare-Metal

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori



2.1 4,000 5, , 1999, 1995, km 1.3km 0.5km 7m 13m 10km 2 2.2

CHEMOTHERAPY APR Fig. 1 Chemical structure of cefotetan (CTT, YM09330)

海水中の溶存有機窒素および溶存有機リンの分析化学的研究

Isolation and Characterization of Microorganisms Capable of Degrading (Ethylenediaminetetraacetato) Ferrate (III) Complex Hideo MIYAZAKI*, Seiji SUZUK

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Respiration

[Nippon Nogeikagaku Kaishi

Hansen 1 2, Skinner 5, Augustinus 6, Harvey 7 Windle 8 Pels 9 1 Skinner 5 Augustinus 6 Pels 9 NL Harvey ML 11 NL

26 1 O 2 oxic zone 2 3 mm O 2 SO 4 2 H 2S 3) CH 4, H 2S, Fe 2+, Mn 2+ O 2 1 O 2 3. 富栄養化内湾堆積物における硫化水素溶出抑制機構 H 2S 3 1. Fe (III) H 2S 2. NO 3 Beggiatoa B

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

立命館21_松本先生.indd



立命館20_服部先生.indd




立命館16_坂下.indd



立命館人間科学研究No.10



立命館21_川端先生.indd

立命館14_前田.indd

立命館17_坂下.indd


立命館人間科学研究No.10



立命館19_椎原他.indd

立命館人間科学研究No.10

立命館19_徳田.indd


北海道体育学研究-本文-最終.indd

Journal of the Combustion Society of Japan Vol.58 No.185 (2016) ORIGINAL PAPER 火災旋風近傍の流れに関する研究 Flow Around a Fire Whirl *

平成26年度 学生要覧

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

1


JAPAN MARKETING JOURNAL 111 Vol.28 No.32008

JAPAN MARKETING JOURNAL 113 Vol.29 No.12009

JAPAN MARKETING JOURNAL 110 Vol.28 No.22008


1) Y. Kobuke, K. Hanji, K. Horiguchi, M. Asada, Y. Nakayama, J. Furukawa, J. Am. Chem. Soc., 98, 7414(1976). 2) S. Yoshida, S. Hayano, J. Memb. Sci.,

VOL.42 S-1

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M

3_23.dvi

DVIOUT-ajhe

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

(Shigen to Sozai) Vol.116 p (2000) 石炭灰フライアッシュからのゼオライトのアルカリ水熱合成と生成物の陽イオン交換特性 * 1 1 村山憲弘山川洋亮 2 3 小川和男芝田隼次 Alkali Hydrothermal Synthesis of Zeol

第2章 有機物汚濁指標の概要と問題点

JFE.dvi


Fig. 1 Structure of a Sebaceous Follicle (Ref.1).

indd

The positive correlation between bad breath and subgigival microflora OTakafumi Department of Periodontics, Tokyo Dental College MORIYAMA, Masatake TS

untitled

Unknown



untitled

ISO

Unknown

On the nitrogen cycle and cultivable capacity of fish in the balanced aquarium By Aritsune SAEKI

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

10_08.dvi

** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite

LAGUNA LAGUNA 8 p Saline wedge at River Gonokawa, Shimane Pref., Japan Saline water intrusion at estuary r

39B: Dae-Yeong JANG Laboratory of Regional Society, Minami Kyushu University, Takanabe, Miyazaki , Japan Accepted : Janu

研究成果報告書

The Journal of the Japan Academy of Nursing Administration and Policies Vol 7, No 2, pp 19 _ 30, 2004 Survey on Counseling Services Performed by Nursi

untitled


Medical Journal of Aizawa Hospital

105†^Ÿ_Ł¶†^åM“è‡Ù‡©.pwd

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

澤津直也.indd

Key words: Surfactant, Tween, Legionella

,977 t 157,977 t mg l mg l BOD 9398 % OH = cm 3 / sec 11 = cm 3 / sec OH = /

Plural bookkeep using Exchange Algebra Yuji Onuki (University of tsukuba) Key Words:,,, 1 Deguchi(2004) 2 (1984) Staszkiewicz(2011) SNA n n r 1,1 < Na

8_総説一般(五十嵐).indd

Transcription:

Journal of Environmental Biotechnology Vol. 4, No. 2, 95 99, 2005 総 説 ( 特 集 ) 脱 窒 性 リン 蓄 積 細 菌 を 利 用 した 下 水 処 理 技 術 および リン 資 源 回 収 の 可 能 性 Municipal Wastewater Treatment Using Denitrifying Phosphate-Accumulating Organisms and Its Potential for Phosphorus Recovery * SATOSHI TSUNEDA, TAKASHI OHNO, KOICHI SOEJIMA and AKIRA HIRATA 169 8555 3 4 1 * TEL: 03 5286 3210 FAX: 03 3209 3680 * E-mail: stsuneda@waseda.jp Department of Chemical Engineering, Waseda University, 3 4 1 Ohkubo, Shinjuku-ku, Tokyo 169 8555, Japan キーワード Key words: denitrifying phosphate-accumulating organisms, municipal wastewater treatment, biological nutrient removal, excess sludge, phosphorus recovery 2004 9 6 2004 12 24 1. は じ め に / / (Anaerobic/Anoxic/Oxic: A 2 O) UCT (University of Cape Town) 23) C/N (Denitrifying Phosphate-Accumulating Organisms: DNPAOs) 3,7,15,19,22) 16,24) 2. 脱 窒 性 リン 蓄 積 細 菌 1 PHA (Polyhydroxyalkanoates)

96 1 (a) (b) PHA 10 15) 19) (Biological nutrient removal: BNR) BNR BNR 2/3 3/4 BNR 9,14) BNR COD C/N 40 20 16,24) 3,8,32) 1,10) 3. 脱 窒 性 リン 蓄 積 細 菌 を 利 用 した 下 水 処 理 プロセス Singlesludge system Two-sludge system 3.1. Single-sludge system Single-sludge system 17) Single-sludge system Single-sludge system anaerobicaerobic-anoxic-aerobic sequencing batch reactor ((AO) 2 SBR) system 21) anaerobic-aerobic-anoxic process (AOA process) 28), anaerobic-aerobic SBR aerobic (dissolved oxygen: DO) 33) 1 (AO) 2 SBR (Phosphateaccumulating organisms: PAOs) 22,29) 11 64 (Total organic carbon: TOC) 92 88 100 21) ph (ORP) SBR (Anaerobic/Oxic/Anoxic:

97 1 Single-sludge system 21) (AO) 2 AOA 28) anaerobic-aerobic 33) C/N/P a 300/30/10 300/30/15 400/40/15 (L) 4 2 4 SRT (days) 18 20 15 DNPAOs b 64 40 DO 0.45 0.55 mg/l a C/N/P: COD/NH 4+ -N/PO 4 3 -P b 22,29) AOA) 28) AOA 2) AOA 1 2 AOA 88 93 A 2 O 21 AOA 44 Zeng / DO 0.45 0.55 mg/l 33) N 2 N 2 O N 2 O 2 AOA CO 2 310 (Denitrifying glycogen-accumulating organisms: DNGAOs) Zeng 31) 3.2. Two-sludge system / DEPHANOX 4 6) A 2 N system 18,27) 3 18) 13) 4) COD 100 99 88 18) COD/N 3.4 C/N 9890 4) Two-sludge system Single-sludge system 18) Single-sludge system SRT Twosludge system SRT UCT

98 3 COD 55 Activated Sludge Model No. 2d (ASM2d) 12) 31) UCT 11) Two-sludge system Single-sludge system Two-sludge system 22,29) 47 66 27) A 2 O 17 36 26) AO 18 24 25) 4. 下 水 汚 泥 からのリン 回 収 の 可 能 性 100 20) 30) 1 A 2 O 4 (PAOs) 4 A 2 O Single-sludge system AOA AOA 10 16 Two-sludge system Single-sludge system 13 文 1) Ahn, J., T. Daidou, S. Tsuneda, and A. Hirata. 2001. Selection and dominance mechanisms of denitrifying phosphate-accumulating organisms in biological phosphate removal process. Biotechnol. Lett. 23: 2005 2008. 2) Ahn, J., T. Daidou, S. Tsuneda, and A. Hirata. 2002. Transformation of phosphorus and relevant intracellular compounds 献

99 by a phosphorus-accumulating enrichment culture in the presence of both the electron acceptor and electron donor. Biotechnol. Bioeng. 79: 83 93. 3) Ahn, J., T. Daidou, S. Tsuneda, and A. Hirata. 2002. Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay. Water Res. 36: 403 412. 4) Bortone, G., F. Malaspina, L. Stane, and A. Tilche. 1994. Biological nitrogen and phosphorus removal in an anaerobic/ anoxic sequencing batch reactor with separated biofilm nitrification. Water Sci. Technol. 30(6): 303 313. 5) Bortone, G., R. Saltarelli, V. Alonso, R. Sorm, J. Wanner, and A. Tilche. 1996. Biological anoxic phosphorus removal The DEPHANOX process. Water Sci. Technol. 34(1-2): 119 128. 6) Bortone, G., L.S. Marisili, A. Tilche, and J. Wanner. 1999. Anoxic phosphate uptake in the DEPHANOX process. Water Sci. Technol. 40(4-5): 177 185. 7) Chuang, S.H., C.F. Ouyang, and Y.B. Wang. 1996. Kinetic competition between phosphorus release and denitrification on sludge under anoxic condition. Water Res. 30: 2961 2968. 8) Dabert, P., B. Sialve, J.P. Delgenes, R. Moletta, and J.J. Godon. 2001. Characterization of the microbial 16S rdna diversity of an aerobic phosphorus-removal ecosystem and monitoring of its transition to nitrate respiration. Appl. Microbiol. Biotechnol. 55: 500 509. 9) Ekama, G.A., and M.C. Wentzel. 1999. Denitrification kinetics in biological N and P removal activated sludge systems treating municipal wastewaters. Water Sci. Technol. 39(6): 69 77. 10) 2002 36 494. 11) Hao, X., M.C.M. van Loosdrecht, S.C.F. Meijer, and Y. Qian. 2001. Model-based evaluation of two BNR process-uct and A 2 N. Water Res. 35: 2851 2860. 12) Henze, M., W. Gujer, T. Mino, T. Matsuo, M.C. Wentzel, G.V.R. Marais, and M.C.M. van Loosdrecht. 1999. Activated sludge model No.2d, Water Sci. Technol. 39(1): 165 182. 13) Hu, Z.-R., M.C. Wentzel, and G.A. Ekama. 2001. External nitrification in biological nutrient removal activated sludge systems. Water Sci. Technol. 43(1): 251 260. 14) Hu, Z.-R., M.C. Wentzel, and G.A. Ekama. 2002. The significance of denitrifying polyphosphate accumulating organisms in biological nutrient removal activated sludge systems. Water Sci. Technol. 46(1-2): 129 138. 15) Kerrn-Jespersen, J. P., and M. Henze. 1993. Biological phosphorus uptake under anoxic and aerobic conditions. Water Res. 27: 617 624. 16) Kuba, T., E. Murnleitner, M.C.M. van Loosdrecht, and J.J. Heijnen. 1996. A metabolic model for biological phosphorus removal by denitrifying organisms. Biotechnol. Bioeng. 52: 685 695. 17) Kuba, T., M.C.M. van Loosdrecht, and J.J. Heijnen. 1996. Effect of cyclic oxygen exposure on the activity of denitrifying phosphorus removing bacteria. Water Sci. Technol. 34(1-2): 33 40. 18) Kuba, T., M.C.M. van Loosdrecht, and J.J. Heijnen. 1996. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Res. 30: 1702 1710. 19) Kuba, T., M.C.M. van Loosdrecht, F.A. Brandse, and J.J. Heijnen. 1997. Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants. Water Res. 31: 777 786. 20) Kuroda, A., N. Takiguchi, T. Gotanda, K. Nomura, J. Kato, T. Ikeda, and H. Ohtake. 2002. A simple method to release polyphosphate from activated sludge for phosphorus reuse and recycling. Biotechnol. Bioeng. 78: 333 338. 21) Lee, D.S., C.O. Jeon, and J.M. Park. 2001. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system. Water Res. 35: 3968 3976. 22) Meinhold, J., D.M.F. Carlos, G.T. Daigger, and S. Isaacs. 1999. Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal. Water Sci. Technol. 39(1): 31 42. 23) Mino, T., M.C.M. van Loosdrecht, and J.J. Heijnen. 1998. Microbiology and biochemistry of the enhanced biological phosphate removal process, Water Res. 32: 3193 3207. 24) Murnleitner, E., T. Kuba, E. Murnleitner, M.C.M. van Loosdrecht, and J.J. Heijnen. 1997. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal. Biotechnol. Bioeng. 54: 433 450. 25) 2004 27: 255 260. 26) Shoji, T., H. Satoh, and T. Mino. 2001. Use of denitrifying polyphosphate accumulating organisms for simultaneous nitrogen and phosphorus removal. Proceeding of First IWA Asia-Pacific Regional Conference, Fukuoka, Japan, 813 818. 27) Shoji, T., H. Satoh, and T. Mino. 2003. Quantitative estimation of the role of denitrifying phosphate accumulating organisms in nutrient removal. Water Sci. Technol. 47(11): 23 29. 28) 2002 25: 751 755. 29) Wachtmeister, A., T. Kuba, M.C.M. van Loosdrecht, and J.J. Heijnen. 1997. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge. Water Res. 31: 471 478. 30) 2004 46: 485 490. 31) Zeng, R.J., Z. Yuan, and J. Keller. 2003. Enrichment of denitrifying glycogen accumulating organisms in anaerobic/ anoxic activated sludge system. Biotechnol. Bioeng. 81: 397 404. 32) Zeng, R.J., A.M. Saunders, Z. Yuan, and L.L. Blackall. 2003. Identification and comparison of aerobic and denitrifying polyphosphate- accumulating organisms. Biotechnol. Bioeng. 83: 140 148. 33) Zeng, R.J., R.L. Lemaire, Z. Yuan, and J. Keller. 2003. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnol. Bioeng. 84: 170 178.