27 2 1



Similar documents
DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

Run-Based Trieから構成される 決定木の枝刈り法

IPSJ SIG Technical Report Vol.2010-GN-74 No /1/ , 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KU

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

DEIM Forum 2017 H ,

27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM U

Wikipedia YahooQA MAD 4)5) MAD Web 6) 3. YAMAHA 7) 8) Vocaloid PV YouTube 1 minato minato ussy 3D MAD F EDis ussy

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

DEIM Forum 2012 E Web Extracting Modification of Objec

DEIM Forum 2012 C2-6 Hadoop Web Hadoop Distributed File System Hadoop I/O I/O Hadoo

Lyra X Y X Y ivis Designer Lyra ivisdesigner Lyra ivisdesigner 2 ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) (1) (2) (3) (4) (5) Iv Studio [8] 3 (5) (4) (1) (

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

IPSJ SIG Technical Report Vol.2010-NL-199 No /11/ treebank ( ) KWIC /MeCab / Morphological and Dependency Structure Annotated Corp

main.dvi



149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-HPC-139 No /5/29 Gfarm/Pwrake NICT NICT 10TB 100TB CPU I/O HPC I/O NICT Gf

IPSJ SIG Technical Report Vol.2011-IOT-12 No /3/ , 6 Construction and Operation of Large Scale Web Contents Distribution Platfo

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So

Microarray Data Analysis Tool Ver3.0 Manual.doc

3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root

56 OS OS OS OS 1 OS HDD OS 1 OS HDD HDD OS OS OSOS HDD 図 1 二重キャッシュ環境 3. 負の参照の時間的局所性 3.1 参照の局所性 Locality of Reference Temporal locality Spatial localit

fiš„v8.dvi

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution

Amazon EC2 IaaS (Infrastructure as a Service) HPCI HPCI ( VM) VM VM HPCI VM OS VM HPCI HPC HPCI RENKEI-PoP 2 HPCI HPCI 1 HPCI HPCI HPC CS

A Japanese Word Dependency Corpus ÆüËܸì¤Îñ¸ì·¸¤ê¼õ¤±¥³¡¼¥Ñ¥¹

Vol. 48 No. 4 Apr LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for L

,., ping - RTT,., [2],RTT TCP [3] [4] Android.Android,.,,. LAN ACK. [5].. 3., 1.,. 3 AI.,,Amazon, (NN),, 1..NN,, (RNN) RNN

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe


ITS資料

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

2

untitled

[4], [5] [6] [7] [7], [8] [9] 70 [3] 85 40% [10] Snowdon 50 [5] Kemper [3] 2.2 [11], [12], [13] [14] [15] [16]

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

7章 構造物の応答値の算定

36 581/2 2012

AJACS18_ ppt

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

Web ( ) [1] Web Shibboleth SSO Web SSO Web Web Shibboleth SAML IdP(Identity Provider) Web Web (SP:ServiceProvider) ( ) IdP Web Web MRA(Mail Retrieval

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

Transcription:

28 2 9

27 2 1

1 4 2 6 2.1........................... 6 2.2...................................... 6 2.3...................... 6 2.4.................................. 7 2.4.1.............................. 7 2.4.2............................. 8 2.5................................. 9 2.6................. 9 3 10 3.1...................................... 10 3.2............................ 10 3.3............................... 11 3.3.1............................... 12 3.3.2.............................. 12 3.3.3............................... 12 3.3.4............................... 12 3.3.5........................... 13 3.4........................................ 14 3.5............................... 14 3.6...................................... 15 3.7...................................... 16 3.8............................. 17 3.9...................................... 18 3.10...................................... 20 3.11............................ 22 4 24 4.1......................... 24 4.2................................... 25 2

4.3.................................... 25 4.4.................................. 26 4.5........................................ 26 4.6............................. 26 4.7...................................... 26 4.8........................................ 28 4.8.1.................................. 29 4.9...................................... 29 4.9.1.................................. 31 5 32 33 34 3

1 [32] [31] CPU [5] [7] [2] 2 10 4

2 3 4 5 5

2 2.1 Service Level Agreement( SLA) SLA [34] NTT VPN Arcstar Universal One SLA [33] 35msec 10% 2.2 2 CPU 2.3 6

[7] [2] 2.4 2 2.4.1 ( CL) [13] ( ) [21] 1 CL A B C 3 1: 7

CPU n n 2.4.2 ( BN) E P (E) [14] 3 [5][19] [26] 2 BN B C P (B) P (C) B C A P (A B, C) BN 2: Web CPU 100% 8

BN 2.5 CL BN [16][15][5][19][12] 2.6 [20] BN CL BN BN 9

3 CL BN 3.1 CL CL BN CL BN CL 3.2 0 CL 1 CL 2 3 BN 4 BN 10

2 BN 4 3 3: CL R k-means[9] BN R bnlearn[26] 3.3 4 2 1 11

3.3.1 Apache JMeter[23] Apache JMeter - Java 3.3.2 Apache mod proxy balancer[24] mod proxy balancer Apache 2 3.3.3 Apache Tomcat[25] ibatis JPetStore[30] Apache Tomcat Java Servlet JavaServer Pages HTML Java JPetStore Java 3.3.4 MySQL MySQL Oracle[29] JPetStore 3.3.4 12

4: 4 3 CPU 1 1GB HDD 20GB 1Gbps CPU 2 4GB HDD 110GB 1Gbps OS Linux(CentOS 6.4) 1 1: CPU OS 2core 1GB 30GB Apache JMeter 2.10 1core 1GB 30GB Apache mod proxy balancer A 1core 1GB 30GB Apache Tomcat 6.0.24-57 B 1core 1GB 30GB ibatis JPetStore 4.0.5 1core 4GB 110GB MySQL 5.1.69-1 CentOS Ver6.4 x64 CPU Disk 10 collectd[27] 3.3.5 2 1 1 3 5 4 2 1 4 8 1(2 ) 2, 3, 4, 5 17 13

2: 1 CPU( 2 ) (%) 2 (bytes) 3 (bytes/sec) 4 Disk( ) I/O (ops/sec) Web Access 5 ( ) 3.4 CL BN BN 3.5 BN COR(0 COR 1) 1 x, y ni=1 (x i x)(y i ȳ) COR = ni=1 (x i x) 2 ni=1 (y i ȳ) 2 COR CL COR CL 14

3.6 BN 1 BN CL 15 5 3 3 1 2 3 1-2 2-3 1-3( ) 6 CL 1-2 6 2 BN 3 5 5: 15

3.7 35 5 1-7 JPetStore Apache JMeter stress [30] ( 6) 7 28 BN 7 3 6: 16

7: 3: 0 00-5 00 5 00-10 00 10 00-15 00 15 00-20 00 20 00-25 00 25 00-30 00 30 00-35 00 A A B A B DB B DB DB 3.8 CL BN 17

CL CL 1 CL 500 CL 500 BN BN 3 3 3 3.9 7 8 10 ( sec) 10 ( sec) 10 ( request/sec) ( ) MA=5 5 4 2-6 18

8: (3.2 ) 1 2 1 BN CL 9 BN 3 P( ) CL D( ) (sec) BN 0 3-6 CL 500 3 4 3-6 BN 10 9 19

9: BN CL ( 1-1) BN 8 BN COR = 0.88 3.10 (3.6 ) 28 4 20

10: CL BN ( 3-6) 4: 1 2-7 0.907 6 2 1-7 0.893 7 3 1-6 0.892 6 4 2-6 0.89 5 5 3-7 0.888 5 6 3-6 0.88 4 7 4-6 0.848 3 8 5-5 0.826 1 9 4-5 0.805 2 10 3-5 0.794 3 27 6-7 21 0.138 2 28 1-1 0 1-0.684 3

4 6 7 6 3.11 ( 1-7) BN CL ( 3-6) BN 1-7 BN CL 11 9 10 11: BN CL ( 1-7) ( 10 11) COR = 0.993 22

23

4 CL BN 4.1 BN 0 CL 1 CL BN 2 BN 3 BN 1-3 12 24

12: 4.2 collectd 10 1-3 30 1 1 6 4.3 CL 25

4.4 CL CL 2 1 6 4.5 35 ( 7) 4.6 3.8 CL BN 1 CL 500 (6 4 ) BN 4.7 7 13 10 ( sec) 10 ( sec) 10 ( request/sec) ( ) 4 2-6 BN 15 (sec) BN 3 ( ) (LS) (LW) R bnlearn 26

13: LW LW 14: 27

LW 13 15 14 15: LW 13 4.8 10 28

4.8.1 BN 1 1 1 3 1 1 3 1 4.9 4 3 BN 10 16 29

16: BN t = 2( ) 1 1 2 4 1 2 2 2 30

4.9.1 5 5: 107 60 90 / 0.561% 0.841% 64 102 57 90 / 0.891 0.882 102 90 10 0 22 48 31

5 10 2 1 2 32

Software Development and Analysis 33

[1] T. F. Abdelzaher, K. G. Shin, et al, Performance guarantees for Web server endsystems: A controltheoretical approach, IEEE Transactions on Parallel and DistributedSystems, 13(1), pp80-96, 2002. [2] G. A. Alvarez, E. Borowsky, et al. An automated resource provisioning tool for largescale storage systems, ACM Transactions on Computer Systems (TOCS), pp483-518, 2001. [3] D. Arthur, B. Manthey, H. Roglin, k-means has polynomial smoothed complexity, 2009. [4] C. Bernard, An optimal convex hull algorithm in any fixed dimension, 1993. [5] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, J.S. Chase, Correlating instrumentation data to system state: A building block for automated diagnosis and control, USENIX Association OSDI 04: 6th Symposium on Operating Systems Design and Implementation, 2004. [6] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth From Data Mining to Knowledge Discovery in Databases, 2008. [7] A. Fox and D. Patterson, Self-repairing computers, Scientific American, 2003. [8] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian Network Classifiers, Machine Learning Volume 29, Issue 2-3, pp131-163, 1997. [9] N. Friedman, M. Linial, I. Nachman, D. Pe er, Using Bayesian Networks to Analyze Expression Data, Journal of Computational Biology 7, pp601-620, 2000. [10] S. Iwata, K. Kono, Clustering Performance Anomalies Based on Similarity in Processing Time Changes, IPSJ Transactions on Advanced Computing Systems, Vol.5 No.1 1-12, 2012. [11] J. B. MacQueen, Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability,University of California Press, pp281-297, 1967. 34

[12] T.H.D. Nguyen, M. Nagappan, A.E. Hassan, M. Nasser, P. Flora, An Industrial Case Study of Automatically Identifying Performance Regression-Causes, MSR Hyderabad, India, 2014. [13] Y. Okada, T. Sahara, S. Ohgiya, T. Nagashima, Detection of Cluster Boundary in Microarray Data by Reference to MIPS Functional Catalogue Database, The 16th Int. Conference on Genome Informatics, Japanese Society for Bioinformatics, Proc. of The 16th Int. Conference on Genome Informatics, Tokyo, Japan, 2005. [14] J. Pearl, Bayesian Networks, a Model of Self-Activated Memory for Evidential Reasoning, Proceedings, Cognitive Science Society pp329-334, 1985. [15] E. Stehle, K. Lynch, M. Shevertalov, C. Rorres, and S. Mancoridis, On the use of Computational Geometry to Detect Software Faults at Runtime, 7th International Conference on Autonomic Computing, ICAC, Washington, DC, USA, 2010. [16] E. Stehle, K. Lynch, M. Shevertalov, C. Rorres, and S. Mancoridis, Diagnosis of Software Failures Using Computational Geometry, 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011), Lawrence, KS, USA, Nov., 2011. [17] R. Taylor, E. Rdcs. Interpretation of the Correlation Coefficient: A Basic Review, JDMS1, pp35-39, 1990. [18] S. Thrun, C. C. Faloutsos, A. W. Moore, P. Spirtes, G. F. Cooper, Learning Bayesian Network Model Structure from Data 2003. [19] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, A. Fox, Ensembles of Models for Automated Diagnosis of System Performance Problems, The International Conference on Dependable Systems and Networks, Yokohama, Japan, 2005. [20],,,,, Web,, Vol.J99-D, No.1, pp.100-108, 2016. [21],,,,, pp.506-511, 2012. 35

[22],,,,, 188 SE, pp1-8, 2015. [23] Apache JMeter, https://jmeter.apache.org/. [24] Apache mod proxy balancer, http://httpd.apache.org/ docs/2.2/ja/mod/mod proxy balancer.html/. [25] Apache Tomcat, http://tomcat.apache.org/. [26] bnlearn - an R package for Bayesian network learning and inference, http://www.bnlearn.com/. [27] collectd, http://collectd.org/. [28] ibatis JPetStore, http://sourceforge.net/projects/ibatisjpetstore/. [29] Oracle, http://www.oracle.com/. [30] stress project page, http://people.seas.harvard.edu/-apw/stress/. [31],, http://thinkit.co.jp/article/1089/1. [32],, http://www.itmedia.co.jp/ im/articles/1005/19/news106.html. [33] VPN Arcstar Universal One SLA, http://www.ntt.com/vpn/data/sla.html. [34] Web Forum, SLA, http://web-tan.forum.impressrd.jp/g/sla. 36