CVIM2010Nov.pdf



Similar documents
4 4 2 RAW (PCA) RAW RAW [5] 4 RAW 4 Park [12] Park 2 RAW RAW 2 RAW y = Mx + n. (1) y RAW x RGB M CFA n.. R G B σr 2, σ2 G, σ2 B D n ( )

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

Microsoft Word - 触ってみよう、Maximaに2.doc

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

)+, $( -++ $ )* "& $ "$...( # / $ & ' / $# && &# & ' '' '( '# ' "& / $ $

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

日阪_NVAC0407.qxd

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

t.dvi

す 局所領域 ωk において 線形変換に用いる係数 (ak 画素の係数 (ak bk ) を算出し 入力画像の信号成分を bk ) は次式のコスト関数 E を最小化するように最適化 有さない画素に対して 式 (2) より画素値を算出する される これにより 低解像度な画像から補間によるアップサ E(

SICE東北支部研究集会資料(2013年)

改訂版 :基本的な文字化の原則(Basic Transcription System for Japanese: BTSJ)

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

★分冊3-説明資料PDF用/02-PDF個別

™ƒŒì„³001†`028.pwd

76

' % % &! #



康乘聡子(P105‐121)/康乘聡子 p105‐121

‡Æ‡Ý‡©457_01-12

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

IPSJ SIG Technical Report Vol.2012-CVIM-182 No /5/ RGB [1], [2], [3], [4], [5] [6], [7], [8], [9] 1 (MSFA: Multi-Spectrum Filt

Łñ“’‘‚2004

プリント


山田直巳109‐121/109‐128

28 Horizontal angle correction using straight line detection in an equirectangular image

デジタルカメラ用ISP:Milbeaut

main.dvi

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1


IPSJ SIG Technical Report Vol.2013-CVIM-187 No /5/30 1,a) 1,b), 1,,,,,,, (DNN),,,, 2 (CNN),, 1.,,,,,,,,,,,,,,,,,, [1], [6], [7], [12], [13]., [

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

光学

slide1.dvi

sumi.indd

Miyazaki-3DForum dvi

,,.,.,,.,.,.,.,,.,..,,,, i


boost_sine1_iter4.eps

proc.dvi

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Transcription:

"#$%&'()#*%+%,&-./%&-*.)0 1"2(340(55672789-./%&-*.)05:)#*%+%5 1

2

3

t t 4

p (" X) = # ( ) p " p X " ( ) p( X ")p(")dx X( ;( ˆ " = " # p " X ( )d" ˆ " = argmax " p (" X) ˆ " = argmax " p( X ") 5

p (" X) = # ( ) p " p X " ( ) p( X ")p(")dx X( ;( <. =. >. 6

?%9*76&@%87/ A6%039B*- 7

?%9*76&@%87/ p (" X) = # ( ) p " p X " ( ) p( X ")p(")dx X( ( ( ) = p x i # i p X " $ i ( ) p " % i % j$n( i) ( ) ( ) = p # i,# j 8

p X " $ i ( ) ( ) = p x i # i p " % i % j$n( i) ( ) ( ) = p # i,# j?&"'c7d"e0"6*- 9

FGH 10

11

IIG IJKL > < M?KNOKPQ> 12

IIG IIG =R<R << STI<=(>U 13

IJKL IJKL =R<R << STI<=(> 14

> HVAVW I?X 15 " " # # # # # # " " # # # " # " # " # " # "##$%&'( "##$%&') "##$%&'* "##$%&'+

Output Input 16

<. =. >. Y. Z. [. U. X5G \. HX]

6%1 C96%1 http://www.cybercom.net/~dcoffin/dcraw/ W&'&/"%6 NPA ^^A XFG _#`arb>cd <[2&* '&/"%6IH? _#Yd I?X 18

19

<. =. >. Y. Z. [. U. X5G \. 20

IJKL 21

IIG =R<R << =e STIe(=U 22

23

I = A( I + N s + N DC + N ) R I( ( N S I A( N S ( N DC ( N R ( I = f A( I + N s + N DC + N ) R ( ) + N Q Glenn E. Healey and Raghava Kondepudy, Radiometric CCD Camera Calibration and Noise Estimation, PAMI, Vol. 16, No. 3, pp. 267-274, 1994 24

I = A( I + N s + N DC + N ) R I = AtP + AtE( N ) DC " 2 = A 2 tp + A 2 2 t" DC + A 2 " R 2 " 2 = s I + t 76 25

^7&/*A6"fG6%g7/hfH#I3%//"' 26

HAW HAW 27

HAW " 2 = s I + t I R I B " p I % R $ ' = p ( I # & )p " K % ( $ # I ' di, K = I R & I B f(x) = 1/x I B 28

_IIGd _IJKLd IIG IJKL 29

<. =. >. Y. Z. [. U. X5G \.

" 2 I ( i) = $ 2 w j " O ( ) j#n i ( j) # # # # " " " # # " # # " # # "##$%&'( " # "##$%&'* Jun Takamatsu, Yasuyuki Matsushita, Tsukasa Ogasawara and Katsushi Ikeuchi, Estimating demosaicing algorithms using image noise variance, CVPR, 2010 31

O = f ( I) ( ) = p( I) f '( I) p O " 2 O # f '( I) ( ) 2 " I 2 $ p( I I )di " 2 O = ( I # µ ) 2 O Jun Takamatsu, Yasuyuki Matsushita and Katsushi Ikeuchi, Estimating radiometric response functions from image noise variance, ECCV, 2008 32

X5G [a i,b i ) "i # Z " O 2 = " I 2 + q2 12 q 1 " 2 Q = * x 2 q dx = 1 2 q ) q 2 # % $ x 3 3 & ( ' q 2 ) q 2 = q2 12 33

i j^oa \E\ 34

35

36

37

^7&/*A6"fG6%g7/hfH#I3%//"' <RR 38

( ) = A( K p ( ) + N ( s p) + N ( DC p) + N ) R + N Q I p ( ) I p " N 2 p ( ( )) +" 2 C ( ) # A 2 I + E N ( DC p) " N 2 p ( ( ( ))) µ = A I + E N DC p ( ) " C 2 kx " C 2 = A 2 " R 2 + q2 12 Glenn E. Healey and Raghava Kondepudy, Radiometric CCD Camera Calibration and Noise Estimation, PAMI, Vol. 16, No. 3, pp. 267-274, 1994 39

( ) = A N ( DC p) + N R I p ( ) + N Q ( ) = AE( N ( DC p) ) E I( p) E I ( i p) ( ) = A K p ( ( ) I ( p ) + E( N ( i DC p) )) ( ) E N ( DC p) 40

P&+7/G>LlLK\RR <5ZR C96%1b3#Y 97/m"6*#C"0*3\ \2&* " # X R.RUe R.R<Y R.RRee n 9= R.=> R.R>< R.<\ # # # " " # # # " " # # # # "## " "## 41

_ZRRR d " # R.eeeZ R.eeeZ R.eeeZ R.R>=< R.R><[ R.R><e IIG <R 42

" # R.R[\ R.R<R R.R<Z <.< R.>Y R.YU 43

44

T7*%'N%6&%87/ ]&"/"6?&'*"6 ]%m"'"*t36"-37'c&/g P7/#'79%'_Po#$"%/-VOE%$0'" VWJ>Gd A. Buades, B. Coll, and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling and Simulation, Vol. 4, No. 2, pp. 490-530, 2005. 45

46

P7/o79%' Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian, Image Denoising by Sparse 3D Transform-domain Collaborative Filtering, IEEE Trans on Image Processing, Vol. 16, No. pp. 2080-2095, 2007 47

G6%g7/hfH#I3%//"'VWJ>G 6 x 10-5 5 4 3 2 1 0 0 0.2 0.4 0.6 0.8 1 48

Ce Liu, William T. Freeman, Richard Szeliski and Sing Bing Kang, Noise Estimation from a Single Image, CVPR, 2006. 49

50

I = At( P + E( N )) DC k ( ) = At 1 P + E( N ) DC g O 1 g O 2 ( ) ( ) ( ) = At 2 P + E( N ) DC ( ) ( ) = t 1 g O 1 g O 2 t 2 51

f ( I) = I " f ( I) = "I # + $ f ( I) = I P I, { " i } f ( I) = w i I i " i=1 ^6&76M^IX http://www.cs.columbia.edu/cave/software/softlib/dorf.php ( ),P I, " i ( { }) = " i I i # i=0 52

N&g/"p/g K089%'C"/-&*f " 1 % Optical density = log 10 $ ' # Light Transmission& 1 Light Transmission = pow(10, Optical density) 53

FGH =R<R << =e STIe(YR HDR " 2 = A 2 tp + A 2 2 t" DC + A 2 " R 2 +" Q 2 I = At( P + E( N DC )) Samuel W. Hasinoff, Fredo Durand and William T. Freeman, Noise-Optimal Capture for High Dynamic Range Photography, CVPR, 2010. t 2 P 2 SNR 2 = 2 tp + t" DC +" 2 R + 1 A " 2 2 Q 54

Li Zhang, Alok Deshpande and Xin Chen, Denoising vs. Deblurring: HDR Imaging Techniques Using Moving Camera, CVPR, 2010 55

$ %$ $% 56

V n = 4kTR"f k( "f( af@c T( R( 57

HX] " 2 = A 2 tp + A 2 2 t" DC + A 2 " R 2 X5G i 58

Yasuyuki Matsushita and Stephen Lin, Radiometric Calibration from Noise Distributions, CVPR, 2007. 59

Noise variance# Imaging process# Output# Response f Noise variance# Observation# Input# Radiometric Calibration# Inverse response g Noise variance# Input Input# Output# Output# Input# Jun Takamatsu, Yasuyuki Matsushita and Katsushi Ikeuchi, Estimating radiometric response functions from image noise variance, ECCV, 2008

I?X I?X Jun Takamatsu, Yasuyuki Matsushita, Tsukasa Ogasawara and Katsushi Ikeuchi, Estimating demosaicing algorithms using image noise variance, CVPR, 2010 61

$ %$&'()'*$+'(,-'. %$ 62

IH? 63

IH? ( ) R xx R x 2 = R xy R x R y ( ) = R yy R = f '' f "1 R 2 y f '( f "1 ( R) ) 2 Yu-Feng Hsu and Shih-Fu Chang, Image Splicing Detection using Camera Response Function Consistency and Automatic Segmentation, Int. Conf. on Multimedia Expo., pp. 28-31, 2007 Zhouchen Lin, Rongrong Wang, Xiaoou Tang and Heung-Yeung Shum, Detecting Doctored Images Using Camera Response Normality and Consistency, CVPR, 2005 64

koj Alin C. Popescu and Hany Farid, Exposing Digital Forgeries in Color Filter Array Interpolated Images, IEEE Transactions on Signal Processing, Vol. 52, No. 10, pp. 3948 3959, 2005 65

G%B2"93&"-1%m"'"* Jan Lukas, Jessica Fridrich and Miroslav Goljan, Digital Camera Identification from Sensor Pattern Noise, IEEE Trans. on Information Forensics and Security, Vol. 1, No. 2, pp. 205-214, 2006. Mo Chen, Jessica Fridrich, Miroslav Goljan and Jan Lukas, Determining Image Origin and Integrity Using Sensor Noise, IEEE Trans. on Information Forensics and Security, Vol. 3, No. 1, pp. 74-90, 2008. 66

^IX, MIRU 2010 67

68

ˆ " = argmin " $ i ( y i # f ( x i ;")) 2 k 69

y = f (x;") + e p( y i x i,") = ( ) 1 & 2#$ exp y % f x i i 2 ( ' 2$ 2 ) + * ( { }) = p { y i} x i p " { x i }, y i & ( { },") = 1, 2#$ exp ( % y % f x i i 2 ( 2$ 2 i ' ( ) ( ) 2 ) + + * "log p ({ y i }{ x i },#) = $ y i " f x i i ( ) ( ) 2 + const 70

k 71

"" i j A F = a ij 2 72

J#"-8$%*76VHXPLXI HXPLXI =R<R << =e STI<R(RZ 73

o0# # x p = % $ n " i=1 x i p & ( ' x " = max x 1,, x n ( ) x 2 = x 1 2 ++ x n 2 x 1 = x 0 = x 1 ++ x n R $ 1"# ( x i ) i L1-Lasso, Fixed point algorithm Marching pursuit 74

G( minrank( A) + " E 0 s.t. D = A + E o<#6"'%e%87/ min A * + " E 1 s.t. D = A + E John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma, Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization, NIPS, 2009 75

o= o0 p( x) = % " % % 2#$ ' & 1 exp + x + µ ( ' * ( * ' & # ) ") & p ( * ) or I7$06"--"C-"/-&/gi k 76

77

( Christopher M. Harris and Daniel M. Wolpert, Signal-dependent noise determines motor planning, Nature, Vol. 394, pp. 780-784, 1998. 78

FGH 79

orvo< 80

T3%/+f7BD76f7B6+&/C%4"/87/q 81