(2) 2. Bell 6) 3. 2 4. 5. 6. 7. (2) N {,, N} L {,, L} (o, d) o d K k K C k ( ) min. k K C k 3) 5) C k C k δ,k c. () L δ,k k, 0 Kronecker () c c (e.g.



Similar documents
04-04 第 57 回土木計画学研究発表会 講演集 vs

12) NP 2 MCI MCI 1 START Simple Triage And Rapid Treatment 3) START MCI c 2010 Information Processing Society of Japan

Hansen 1 2, Skinner 5, Augustinus 6, Harvey 7 Windle 8 Pels 9 1 Skinner 5 Augustinus 6 Pels 9 NL Harvey ML 11 NL

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

第3章.DOC

<4D F736F F D20D2E5E7E8F1FB E3EEE45FE8F1EFF0>

Grund.dvi

1,000km 1.7% 0.0% 0.8% 100% 80% 60% 40% 20% 94.4% 0.1% 3.0% 0.3% 0.5% 0.0% 96.2% 1 0.2% 2.8% 0% km ft 40f

,,,,., C Java,,.,,.,., ,,.,, i


2 ( ) i

The Japanese Journal of Health Psychology, 29(S): (2017)

DGE DGE (1) ( 1

2) TA Hercules CAA 5 [6], [7] CAA BOSS [8] 2. C II C. ( 1 ) C. ( 2 ). ( 3 ) 100. ( 4 ) () HTML NFS Hercules ( )

LCC LCC INOUE, Gaku TANSEI, Kiyoteru KIDO, Motohiro IMAMURA, Takahiro LCC 7 LCC Ryanair 1 Ryanair Number of Passengers 2,000,000 1,800,000 1,


14 2 5

J.M. p.81 CSR Corporate Social Responsibility

…p…^†[…fiflF”¯ Pattern Recognition

RTM RTM Risk terrain terrain RTM RTM 48

わが国企業による資金調達方法の選択問題

ú r(ú) t n [;t] [;t=n]; (t=n; 2t=n]; (2t=n; 3t=n];:::; ((nä 1)t=n;t] n t 1 (nä1)t=n e Är(t)=n (nä 2)t=n e Är(t)=n e Är((nÄ1)t=n)=n t e Är(t)=n e Är((n

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

Hohenegger & Schär, a cm b Kitoh et. al., Gigerenzer et. al. Susan et. al.


Web Basic Web SAS-2 Web SAS-2 i


放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

tnbp59-17_Web:プO1/ky079888509610003201

SERPWatcher SERPWatcher SERP Watcher SERP Watcher,

kut-paper-template.dvi

28 Horizontal angle correction using straight line detection in an equirectangular image

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

三石貴志.indd

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

形状変形による古文書画像のシームレス合成

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

soturon.dvi

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

untitled

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

<95DB8C9288E397C389C88A E696E6462>

IPSJ SIG Technical Report Vol.2014-ICS-175 No /3/14 Modified Stochastic Cell Transmission Model 1,a) 1,b) 1,c) Cell Transmission Model CTM Stoc

パーソナリティ研究 2005 第13巻 第2号 170–182

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

自然言語処理16_2_45

02[ ]小山・池田(責)岩.indd

Visit Japan Campaign OD OD 18 UNWTO 19 OD JNTO ODUNWTO 1 1

29 jjencode JavaScript

29 Short-time prediction of time series data for binary option trade

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna


kut-paper-template2.dvi

新製品開発プロジェクトの評価手法

i

ï\éÜA4*

main.dvi

Microsoft Word - Šv”|“Å‘I.DOC

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Abstract Gale-Shapley 2 (1) 2 (2) (1)

BB 報告書完成版_修正版) doc

人文学部研究年報12号.indb

,,.,.,,.,.,.,.,,.,..,,,, i

Memetic 26 2 (125T208T)

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

26 No.62 Contents No.62

AtCoder Regular Contest 073 Editorial Kohei Morita(yosupo) A: Shiritori if python3 a, b, c = input().split() if a[len(a)-1] == b[0] and b[len(

橡表紙参照.PDF

表紙参照.PDF

..,,...,..,...,,.,....,,,.,.,,.,.,,,.,.,.,.,,.,,,.,,,,.,,, Becker., Becker,,,,,, Becker,.,,,,.,,.,.,,

46 Y Y Y Y 3.1 R Y Figures mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y Y Figure 5-

IT,, i

パナソニック技報

<4D F736F F D DB82CC88F892A38BAD937893C190AB76355F8D5A897B8CE3325F2E646F63>

第85 回日本感染症学会総会学術集会後抄録(I)

23 Study on Generation of Sudoku Problems with Fewer Clues

GDP GDP 1 98% 2

浜松医科大学紀要

2 (S, C, R, p, q, S, C, ML ) S = {s 1, s 2,..., s n } C = {c 1, c 2,..., c m } n = S m = C R = {r 1, r 2,...} r r 2 C \ p = (p r ) r R q = (q r ) r R

paper.dvi

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System


2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

ii

indd


udc-2.dvi

untitled

gengo.dvi

Sobel Canny i

日本糖尿病学会誌第58巻第2号


B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching

116,/ / - /-, /1 /2 0 / ,, / 3 ing / , 2, 3, , 3,,. ISO. /.. 0 -,. ISO., 0-

Transcription:

2 ( ) ( 657-850 -) 2 ( 980-8579 06) ( ) maximin logit Key Words :. () ( ) ( ) ),2) (e.g. ) ( ) 3) 4) HazTrans 4) PC*HazRoute 5) ( (2) ) LPHC (Low Probability with High Conseuence: ) ( ) ),6) Bell 6) LPHC ( ) maximin Bell 6) 2 i) ii) heuristic LPHC Bell 6) logit

(2) 2. Bell 6) 3. 2 4. 5. 6. 7. (2) N {,, N} L {,, L} (o, d) o d K k K C k ( ) min. k K C k 3) 5) C k C k δ,k c. () L δ,k k, 0 Kronecker () c c (e.g. ) (potential exposure) 3),5) ),6) Abkowitz 4) ( Erkut and Ingolfsson ) ) 3) Asakura 4) (incident probability) { } ( Erkut and Verter 0) 0 6 0. 0.8) 2 { } ( ) 2 C k LPHC (low-probability with high-conseuence: ) Bell 6) LPHC Bell 6) LPHC 2 ( ) 2

2 2 ( ) LPHC (catastrophe averse) ) 0 3 0 0 7 0, 000 ambiguity ( Knight 7) ) 8),9),20),2) 22) Bell 6) k K h k ( ) C k k K h k C k ( ) 2 {h k } { } ( ) maximin (MM) Bell 6) maximin (MSA: Method of Successive Averages) MM 3 MM (i.e. ) 2 Bell heuristics 2 Bell 6) 3 Bell MM 2 (o, d ) (o, d 2 ) (o, d ) (o, d 2 ) Bell 6) Bell 6) MM ( ) 2 MM 2 2. maximin (MM) () (2) Bell 6) MM (3) 2 () ( ) G N {,, N} L {,, L} o D D (o, d) K d, d D L 3

( ) c G ( ) { L} =. (2) L 0, L (3) (o, d) k K d k ( ) C d k () c δ d,k, k Kd, d D. (4) L δ d,k Kronecker (o, d) k n n k 0 d D f d (o, d) d k K d h d k h {h d k k Kd, d D} h k K d h d k = f d, d D. (5) h d k 0, k Kd, d D. (6) h π (h) c, L. (7) h d k δd,k k K d (exposure) δ d,k (4) Kronecker h ( ) Z 0 (h, ) h d k c δ d,k k K d L = h d k Cd k () k K d = π (h) L Z 0 (h, ) (h ) (2) LPHC (LPHC: Low Probability with High Conseuence) (i.e. ) h maximin [P0] max. min. Z 0 (h, ), h s.t. (h, ) Ω h Ω. Ω h h (5) (6) Ω (2) (3) [P0] ( ) maximin (MM) MM 2 6) 2 (i.e. ) (i.e. ) MM [P0] Nash ( ) (3) Bell 6) MM 2 (LP: Linear Programming) MM [P0] 4

[P0] [P0 -Dual] max. Z 0 (), s.t. Ω. Z 0 () h [LP0 ()] Z 0 () min. Z 0 (h, ), s.t. h Ω h. h [LP0 ()] [LP0 -()-Dual] Z 0 () = max. f d S d 0, S 0 s.t. S d 0 Cd k (), k Kd, d D. (8) S 0 {S d 0 d D} (5) Lagrange (8) S d 0 (o, d) ( ) [LP0 ()-Dual] Z 0 () [P0 -Dual] maximin [P0] S 0 [LP0-Dual] max. f d S d 0,,S 0 s.t. S d 0 Cd k (), k Kd, d D, Ω. (o, d) S d 0 S d 0 () min. C d k K d k (), d D. (9) [LP0-Dual] [CP0-Dual] max. f d S d 0 (), s.t. Ω. [LP0-Dual] h (2) Lagrange Q 0 [LP0-Primal] min. h,q 0 Q 0, s.t. Q 0 π (h), L, (0) h Ω h. π (h) (7) [LP0-Primal] Q 0 (0) h h Q 0 (h) max. L π (h)c () [LP0-Primal] h [CP0-Primal] (4) min. Q 0 (h), s.t. h Ω h. h MM [P0] 2 [LP0-Dual] [LP0-Primal] LP 2 [LP0-Dual] [LP0-Primal] h 2 [LP0-Dual] [LP0-Primal] {h d k } {Cd k ()} (o, d) K d Bell 6) MM [P0] (MSA: Method of Successive Averages) Bell heuristic 6) 3. MM [P0] [P0] ( ) (variation) 2 5

4. () [P0] [P] max. min. Z (h, ) h s.t. (h, ) Ω h Ω. Z 0 (h, ) f d HK d θ (h), Ω h Ω h (5) (6) (2) (3) [P] (RM) RM [P0] 2 H d K (h) (o, d) d D H d K (h) k K d h d k f d ln hd k f d. (2) HK d (h) H K d (h) (o, d) (i.e. h d = hd 2 = ) ln K d (i.e. k K d h d k = f d, h d k = 0, k k) 0 HK d (h) (o, d) HK d (h) HK d (h) RM [P] h θ (i.e. ) θ 0 Z 0 (h, ) θ RM [P] MM [P0] (2) RM [P] 2 h RM [P] [P -Dual] max. Z (), s.t. Ω. Z () h [CP ()] Z () min. Z 0 (h, ) f d HK d h θ (h), s.t. h Ω h. [CP ()] {C k ()} logit 23) d D h d k () f exp [ θc d d k [ ()] exp k θc d Kd. (3) k ()], k K d Z () Z () f d S d (). (4) S d () (o, d) d D S d () θ ln [ θc d k ()]. (5) k K d exp (4) (5) RM [P] [CP-Dual] Z () max. f d S d (), s.t. Ω. Ω (2) (3) h 6

[CP-Primal] min. Q (h) h θ s.t. h Ω h f d HK d (h), [CP-Primal-Link] min. Q (x) x θ s.t. x Ω x f { d HL d (x) Hd N (x)}, Ω h h (5) (6) Q (h) Q (h) max. L π (h) (6) [CP-Primal] RM [P] (3) [CP-Primal] logit (4) (3) logit Markov HK d (h) 24) HK d (h) = Hd L [x(h)] Hd N [x(h)], d D. (7) x(h) xi d j (h), L, d D. (8) k K d h d k δd,k HL d(x) Hd N (x) d D HL d (x) xi d j f ln xd d f, d L HN d (x) x d i N f d ln j O(i) x d = f d ln j N i I( j) xi d j f d j O(i) xi d j f d i I( j),. O(i) { j L} I( j) {i L} i j [P-Primal] x {xi d j L, d D} Q (x) (6) x Ω x x p d ni xim d + bd i = 0, i N, d D. (9) n I(i) m O(i) x d 0, L, d D. (20) b d i i f d i f d 0 (4) [CP-Dual] [CP-Primal] [CP-Primal-Link] [CP-Primal] h 2 HK d (h) h h h [CP-Primal-Link] x 2 3 HL d(x) Hd N (x) x 24) x x [CP-Dual] (o, d) S d () ( C d {C d k k Kd } ) {C d } S [P] 7

7. 4. RM [P] [CP-Dual] logit (Bell 6) all-or-nothing heuristic ) 3 a) Z b) d c) α () logit (2) (SUE: Stochastic User Euilibrium) Maher 25) () Z () Z () logit d Z () [ Z () ] f d S d () = π (), L. (2) π () L π () c xi d j (), (22) xi d j () L d D x d () k K d h d k ()δd,k, (23) h d k () (3) (2) (23) Z () d D k K d ( ) C k () logit x() {xi d j () L, d D} (23) logit ( ) Dial 26) Bell 27) Akamatsu 28) Bell-Akamatsu 27),28) x() S () {S d () d D} 2 i, j N exp [ ] θc if L, W () (24) 0 otherwise. d D S d () S d () = θ ln V od(). (25) xi d j () d D L xi d j () = f d V oi()w ()V jd (). (26) V od () V () i j V() [ I W() ] I. (27) W() N N i j (24) I N N V() (27) II 8

Z () [CP-Dual] Z () 0 α + α Z () (2) (3) Ω n Z ( (n) ) α (n) max d (n) (n) z (n) Z ( (n) ) r(n) arg. max. L z (n) n ˆL(n) L\r(n) ˆL(n) [d (n) z (n) z (n) r(n) if (n) > 0, ] 0 if (n) = 0. (28) [d (n) ] r(n) d (n). (29) ˆL(n) L d (n) = 0 α (n) + αd (n) (2) r(n) d (n) 0 d (n) < 0 n α (n) α (n) max min. ˆL max { } (n) /d(n). (30) α [0, α (n) max] (n) + αd (n) (3) (2) n α (n) [0, α (n) max] Z () logit (i.e. (27) V() ) Z ( (n) + αd (n) ) α (n) ( ) 2 SUE Maher 25) (uadratic interpolation) n (n) d (n) α Ẑ (n) (α) Z ( (n) + αd (n) ) Maher 25) α [0, α (n) max] Ẑ (n) ( ) α = 0, α (n) max Ẑ (n) (α) dẑ (0) dα dẑ (α (n) max) dα Z ( (n) ) d (n) g (n) 0, (3) Z ( (n) + α (n) maxd (n) ) d (n) g (n) max. (32) α (n) α (n) := g (n) 0 α (n) max. (33) g (n) max g (n) 0 (3) (33) I [Algorithm ] Step 0 ( ) () Ω n := Step ( ) (n) (n) [CP-Dual] Step 2 () (2) (30) d (n) α (n) max Step 3 ( ) (2) (27) Z ( (n) + α (n) maxd (n) ) (3) (33) α (n) Step 4 ( ) (n+) := (n) + α (n) d (n) n := n + Step 5. 9 2 (e.g. ) 9 9

6 2 5 3 32 7 28 7 22 4 K 2 6 f 9 = θ = 0.00, 0.0, 0.,, 0 RM [P] {h k } {C k C k( )} (i.e. ) Z S θ ln k e θc k () = /2 θ h S 2 2 θ MM [P0] {C k } S 0 k C k h k θ {h k } 2 θ {C k } θ (i.e. ) θ θ S (RM [P] ) 2 θ = n (n) [CP-Dual] Z (n) S ( (n) ) [ [ 6,9, 8,9 ] = c 6,9 c 6,9 +c 8,9, c 8,9 c 6,9 +c 8,9 ] [0.452, 0.548] S 0 = c 6,9 6,9 = c 8,9 8,9 = 7.677 (h k ) ID θ =.0 θ =.05 θ =. θ = θ = 0 2 3 6 9 0.84 0.26 0.22 0.22 0.22 2 2 5 6 9 0.48 0.23 0.20 0.20 0.20 3 2 5 8 9 0.69 0.40 0.37 0.37 0.37 4 4 5 6 9 0.48 0.23 0.20 0.20 0.20 5 4 5 8 9 0.69 0.40 0.37 0.37 0.37 6 4 7 8 9 0.84 0.259 0.274 0.274 0.274 0.000 0.003 0.004 0.004 0.004 2 (Ck ) ID θ =.0 θ =.05 θ =. θ = θ = 0 θ 0 3.540 5.833 7.493 7.659 7.677 2 22.055 4.900.53 8.06 7.76 7.677 3 8.702 2.229 0.77 7.928 7.702 7.677 4 22.055 4.900.53 8.06 7.76 7.677 5 8.702 2.229 0.77 7.928 7.702 7.677 6 0 0 3.246 7.234 7.633 7.677 98.727 39.776.629 0.6 0.00 0 Z (n) (S ) -69.33-27.077-9.693 5.940 7.504 7.677 6 Z ( ) 5 4 3 2 20 40 60 80 # of iterations 2 Z = 5.940 60 ( 2 ) Bell 6) heuristics 00 ( ) 6. 0

() (i.e. ) (i.e. ) d D (i.e. ) f { f d d D} f (strategic level) h (operational level) f h d D (e.g. ) Ψ d f Z D ( f) f d Ψ d. (34) f d = E. (35) f d 0, d D. (36) E E = [P2] max. min. Z 2 (h,, f) h, f Z 0 (h, ) + Z D () f d HK d θ (h) ξ H D( f), s.t. (, h, f) Ω Ω h Ω f. H D H D ( f) f d ln f d. (37) ξ ( ) f Ω f (35) (36) [P2] - 29) [P2] RM [P] [P2] h f d D nested-logit f d () exp [ ξ { S d () + Ψd}] exp [ ξ { (38) S od () + Ψd}], d D h d k () f exp [ θc d d k () [ ()] exp k θc d Kd. (39) k ()], k K d S d () (o, d) (5) [P2] [CP2-Dual] min. Z 2 () ξ ln exp [ ξ { S d () + Ψd}], s.t. Ω. [P2] [CP2-Dual] Z 2 () [ Z 2 ()] = Z 2() Z 2 S d = () S d = c xi d j (), (40) xi d j () L d D x () h d k ()δd,k. (4) k K d h d k () (39) [CP2-Dual] [Algorithm-] Step 2 z() Z 2 () Z 2 () (25) (27) S () V() 2 S () (38)

f() 3 f() V() xi d j () = f d () V oi()w ()V jd (). V od () (2) LPHC (catastrophic averse) (i.e. ) (e.g. ) (i.e. ) (RM [P] ) [P] (i.e. ) p {p } p =, and p > 0, L. (42) L p ( ) ( ) p R(; p) ln (43) p L R(; p) > 0 R(; p) 0 p = p R(; p) = 0 RM [P] [P3] min. h max. Z 3 (h, ) Z (h, ) R(; p), η s.t. (h, ) Ω h Ω. /η(> 0) p (i.e. p ) [P3] [P3] RM [P] /η 0 [P3] [CP3-Dual] max. Z 3 () f d S d () R(; p), η s.t. Ω. 2 [P3] RM [P] ( h [P] ) [CP3-Dual] RM [CP2-Dual] [Algorithm-] Step 2 [CP3-Dual] [ Z3 () ] = Z 3 = = π () η f d S d () { ln p + R(; p), η }, (44) π () (22) [CP3-Dual] [Algorithm-] Step 2 z() Z 3 () 7. Bell 6) maximin 2 2

I 25) n (n) d (n) α [0, α (n) max] Ẑ (n) (α) Z ( (n) + αd (n) ) Maher 25) α [0, α (n) max] Ẑ (n) (α) Q (n) (α) β(n) 2 ( ) α β (n) 2 2 + β (n) 3. (I.) α n β (n), β(n) 2 β (n) 3 (i.e. α = 0, α (n) max) Ẑ (n) (α) = Q(α), dẑ (α) = dq(α) dα dα. (I.2) α = 0, α (n) max Ẑ (n) (α) Ẑ (n) (0) Z ( (n) ) d (n) g (n) α 0, Ẑ (n) (α(n) max) Z ( (n) + αd (n) ) d (n) g (n) α max. Q (n) (α) II α (n) = β (n) 2 = g (n) 0 g (n) max g (n) 0 α (n) max. (I.3) Logit x i N (i.e. 2 ) O {,, β} T {β +,, γ} D {γ +,, N} O O = β, T T = γ β D D = N γ β 2 G(N, L) 0 oo W ot 0 od W 0 to W tt W td, 0 do 0 dt 0 dd W ot {W oi i = β +,, γ, o =,, β}, W tt {W i = β +,, γ, j = β +,, γ}, W td {W id i = β +,, γ, d = γ +,, N}. (II.) O T T T T D 0 oo, 0 od, 0 to, 0 do, 0 dt 0 dd 0 O O, O D, T O, D O, D T D D (27) N N V 0 oo V ot V od V [I W] I = 0 to V tt V td, 0 do 0 dt 0 dd (II.2) V ot W ot [I W tt ], V od W ot [I W tt ] W td, V tt [I W tt ] I, V td [I W tt ] W td. (II.3) O T, O D, T T, T D V W (o, d) x d {xi d j L} i j x d f d V owv d V od, (o, d) OD. (II.4) V o V d N N i V o,i V i,d (II.4) x d (II.3) V V ot, V td V od (II.4) [I W] [I W tt ] V ot = W ot, o O, (II.5) [I W tt ]V td = W td, d D. (II.6) V ot V td V ot W td V od = V ot W td. (II.7) ( V od = W ot V td ) (II.5) (II.6) 3

W tt L SOR (Successive Over relaxation) JOR (Jacobi Over Relaxation) ) U.S. Department of Commerce, Bureau of the Census, Washington, DC.: Truck Inventory and User Survey, 994. 2) Itoh, T., Hayano, M., Naito, T., Asakura, Y., Hato, E. and Wada, T.: Empirical analysis on hazardous material transportation using road traffic census and accident data, in E., T. and G., T. R. eds., City Logistics III, pp. 245 258, Institute for City Logistics, 2003. 3) List, G., Mirchandi, P., Turnuist, M. and Zofrafos, K.: A modelling and analysis for hazardous materials transportation: Risk analysis, routing-scheduling and facility location, Transportation Science, Vol. 25, No. 2, pp. 00 4, 99. 4) Abkowitz, M., Lepofsky, M. and Cheng, P.: Selecting criteria for designating hazardous materials highway routes, Transportation Research Record, Vol. 333, pp. 30 35, 992. 5) Sivakumar, R. and Batta, M., R. Karwan: A network based model for transporting extremely hazardous materials, Operations Research Letters, Vol. 3, No. 2, pp. 85 93, 993. 6) Sivakumar, R. and Batta, M., R. Karwan: A multiple route conditional risk model for transporting hazardous materials, INFOR, Vol. 33, pp. 20 33, 995. 7) Erkut, E.: On the credibility of the conditional risk model for routing hazardous materials, Operations Research Letters, Vol. 8, pp. 49 52, 995. 8) Jin, H., Batta, R. and Karwan, M. H.: On the analysis of two new models for transporting hazardous materials, Operations Research, Vol. 44, No. 5, pp. 70 723, 996. 9) Sherali, H. D., Brizendine, L. D., Glickman, T. S. and Subramanian, S.: Low probability-high conseuence considerations in routing hazardous material shipments, Transportation Science, Vol. 3, No. 3, pp. 237 25, 997. 0) Erkut, E. and Verter, V.: Modeling of transport risk for hazardous materials, Operations Research, Vol. 46, No. 5, pp. 625 642, 998. ) Erkut, E. and Ingolfsson, A.: Catastrophe avoidance models for hazardous materials route planning, Transportation Science, Vol. 34, No. 2, pp. 65 79, 2000. 2) Kara, B., Erkut, E. and Verter, V.: Accurate calculation of hazardous materials transport risks, Operations Research Letters, Vol. 3, pp. 285 292, 2003. 3),,,, Vol. 30, pp. CD ROM, 2004. 4) Asakura, Y.: Risk assessment for hazardous materials transportation in a road network, in Proceedings of 2nd International Symposium on Transport Network Reliability, pp. 5 9, 2004. 5) ALK Associates, Princeton, New Jersey: ALK s PC*HazRoute (Version 2.0), 994. 6) Bell, M. G. H.: Mixed route strategies for the risk-averse shipment of hazardous materials, Networks and Spatial Economics, Vol. 6, pp. 253 265, 2006. 7) Knight, F. H.: Risk, Uncertainty and Profit, Houghton, Mifflin, Boston, 92. 8) Ellsberg, D.: Risk, ambiguity, and the Savage axioms, Quarterly Journal of Economics, Vol. 75, pp. 643 669, 96. 9) Gilboa, I.: Expected utility with purely subjective nonadditive probabilities, Journal of Mathematical Economics, Vol. 6, pp. 65 88, 987. 20) Schmeidler, D.: Subjective probability and expected utility without additivity, Econometrica, Vol. 57, pp. 57 587, 989. 2) Gilboa, I. and Schmeidler, D.: Maxmin expected utility with non-uniue prior, Journal of Mathematical Economics, Vol. 8, pp. 4 53, 989. 22),,, 2006. 23) Fisk, C. S.: Some developments in euilibrium traffic assignment, Transportation Research B, Vol. 4, pp. 243 255, 980. 24) Akamatsu, T.: Decomposition of path choice entropy in general transport networks, Transportation Science, Vol. 3, No. 4, pp. 349 362, 997. 25) Maher, M.: Algorithms for logit-based stochastic user euilibrium assignment, Transportation Research B, Vol. 32, No. 8, pp. 539 549, 998. 26) Dial, R. B.: A probabilistic multipath traffic assignment algorithm which obviates path enumeration, Transportation Research, Vol. 5, pp. 83, 97. 27) Bell, M. G. H.: Alternative to Dial s logit assignment algorithm, Transportation Research B, Vol. 29B, No. 4, pp. 287 295, 995. 28) Akamatsu, T.: Cyclic flows, Markov process and stochastic traffic assignment, Transportation Research B, Vol. 30, No. 5, pp. 369 386, 996. 29),, Vol. 40/IV, pp. 09 8, 989. ( 9 2 4 ) Catastrophe Averse Strategies for Routing and Siting in the Disposal of Hazardous Materials Takeshi NAGAE and Takashi AKAMATSU This study provides a method for uantitative analysis of a shipment planning of hazardous materials (hazmats). We first formulate a hazmat routing problem as a maximin problem: the assignment of hazmat vehicles is determined so as to minimize the expected conseuence; the incident probabilities on each link are chosen so as to maximize the expected conseuence, reflecting catastrophe avoidance of the dispatcher. Our analysis then reveals that the maximin problem reduces to a single-level convex programming problem, which shares a common mathematical structure with a logit-type stochastic user euilibrium problem that is well known in the field of transportation science. This enables us to develop a globally convergent algorithm for obtaining the optimal mixed route strategy, which can be effectively applied to real world large-scale networks. 4