72 5 f (x) f Tylor f (x) f (x) = f (x) + 2 f (x) + 2 3! f (x) + (5.) = f (x) + O() = f (x) 2 f (x) + 2 3! f (x) (5.2) = f (x) + O() δ f 2 = ( f (x) +



Similar documents
2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

日本内科学会雑誌第102巻第10号

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x


, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

Chap11.dvi

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

untitled

f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo

24.15章.微分方程式

- II

日本内科学会雑誌第101巻第12号

untitled


3 3 i

REALV5_A4…p_Ł\1_4A_OCF

untitled

「都市から地方への人材誘致・移住促進に関する調査」

<91498EE88CA D815B2E786C73>

〔 大 会 役 員 〕

橡本体資料+参考条文.PDF

Lecture on

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v

SOWC04....

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

Ł\”ƒ-2005

C:/KENAR/0p1.dvi


I [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X X n ): µ X N(µ, σ 2 /n) Z = X µ σ/ n N(, 1) < α < 1/2 Φ(z) =.5 α z α

30

A A. ω ν = ω/π E = hω. E

V6.0統合版チラシ/チラシ

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

日本内科学会雑誌第98巻第3号

( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

body.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux EP

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

第85 回日本感染症学会総会学術集会後抄録(III)

基礎数学I

さくらの個別指導 ( さくら教育研究所 ) A AB A B A B A AB AB AB B

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

CW3_A1083D05.indd

本文/年次報告  67‐107

32号 701062/きじ1

10西宮市立中央病院/本文

北九州高専 志遠 第63号/表紙・表4

特別プログラム

Ł\”ƒ

報告書(第2回NGO‐JICA)/はじめに・目次

P-12 P P-14 P-15 P P-17 P-18 P-19 P-20 P-21 P-22

untitled

program08.pdf


ニューガラス100/100目次


LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)


WE7281_help




A B C E ( ) F

白山の自然誌21 白山の禅定道

平成16年度 市政年報

Micro-D 小型高密度角型コネクタ

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

DVIOUT

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä


untitled

チュートリアル:ノンパラメトリックベイズ

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

文庫●注文一覧表2016c(7月)/岩波文庫


PowerPoint プレゼンテーション

RIMS98R2.dvi


p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

A B C D E F G H J K L M 1A : 45 1A : 00 1A : 15 1A : 30 1A : 45 1A : 00 1B1030 1B1045 1C1030

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

高等学校学習指導要領

高等学校学習指導要領

untitled

p x xp KT KT /..

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

Transcription:

7 5 Derivtives nd integrls re lso very useful s topics for tecing bout numericl computtion nd nlysis. Tey re esily understood, one cn present intuitive or pictoril motivtions, te lgebr is usully not too messy, nd yet teir clcultion is not trivil. J.R.Rice, Numericl Metods, Softwre, nd Anlysis, 2nd Ed., (Acdemic Press) ( ) (Ordinry) (Prtil) (Differentil Eqution, DE) (Integrl Eqution) 5. f (x) (forwrd, bckwrd nd centrl difference) [ ] f (x) = f (x + ) f (x) [ ] f (x) = f (x) f (x ) [ ] δ f (x) = f (x + ) f (x ) [ ] f (x) f (x) [ ] f (x) f (x) [ ] f (x) δ f (x) 2

72 5 f (x) f Tylor f (x) f (x) = f (x) + 2 f (x) + 2 3! f (x) + (5.) = f (x) + O() = f (x) 2 f (x) + 2 3! f (x) (5.2) = f (x) + O() δ f 2 = ( f (x) + f (x) ) 2 = f (x) + 2 3! f (x) + = f (x) + O( 2 ) 5.. f (x) = sin (cos x) x = π/4 IEEE754 f (π/4) 5. f (x) (5.) (5.2) ( f (x) f (x) ) f (x ) 2 f (x) + f (x + ) = 2 5.. = f (x) + O( 2 ) (5.3) f (x) = sin(cos x) f (π/4) f (π/4)/, δ f (π/4)/ 5. 0 3

5.2. 73 相 対 誤 差 0.00 前 進 差 分 商 後 退 差 分 商 e-06 e-09 中 心 差 分 商 e-2 e-5 0 0 0-2 0-4 0-6 0-8 0-0 5.: 5.2 f (x) x = f () Stirling [26] [3 ] f () = { 2 f ( + ) } f ( ) 2 + 6 f (3) () 2 + (5.4) { 2 f ( + 2) + 23 f ( + ) 23 f ( ) + 2 } f ( 2) [5 ] f () = + 30 f (5) () 4 + (5.5) [7 ] f () = { 60 f ( + 3) 3 20 f ( + 2) + 3 4 f ( + ) 3 f ( ) 4 3 + 20 f ( 2) } f ( 3) 60 + 40 f (7) () 6 + (5.6) order 3 2 5 4, 7 6

74 5 f (x) = cos (sin x) f (x) x = π/4 f (π/4) = 4.593626849327 0 2 0, 2,..., 2 0 (TE) (RE) 5.2 ( ) = 2 x 0 00 IEEE754.0E-0 Reltive Error.0E-05.0E-09.0E-3 3 Points, TE. 3 Points, RE 5 Points, TE 5 Points, RE 7 Points, TE 7 Points, RE.0E-7.0E-2 0 2 4 6 8 0 2^(-x) : Stepsize 5.2: x = π/4 (TE) (RE) ( ) 3, 5, 7 2, 4, 6 IEEE754 IEEE754 5.2 3 = 2 0 2 0 7 = 2 6 5 = 2 0 IEEE754 5.3

5.2. 75.0E-0.0E-05 Reltive Error.0E-09.0E-3 3 Points 5 Points 7 Points.0E-7.0E-2 0 2 4 6 8 0 2^(-x) : Stepsize 5.3: x = π/4 f (π/4) 7 5. 5.3 = 2 6 2 6 4.593626849327 4.593626849328 4.59362684933 0 2 [3] x = [ 2π, 2π]

76 5 5.: 7 7 f (π/4) 2 0 4.568860826503527e 0 2 4.59327000065456403e 0 2 2 4.5936279303235640e 0 2 3 4.5936267730507094e 0 2 4 4.5936268484669853e 0 2 5 4.59362684930946064e 0 2 6 4.59362684932753673e 0 2 7 4.593626849328092e 0 2 8 4.5936268493279397e 0 2 9 4.59362684932760557e 0 2 0 4.5936268493283272e 0 5.3 Newton-Cotes Riemnn f (x)dx (5.7) Newton-Cotes (x i, f (x i )) Lgrnge [x 0, x k ] k ( ) k + (x 0, f (x 0 )),..., (x k, f (x k )) k p k (x) p k (x) f (x) x 0 x x 2 x k 5.4: k f (x) p k (x) xk x 0 f (x)dx xk x 0 p k (x)dx (5.8) p k (x) Lgrnge (4.5) (5.8)

5.3. Newton-Cotes 77 xk x 0 p k (x)dx = xk x 0 k j=0 k ( = ψ (x j=0 j ) k = ψ (x j ) = j=0 ψ(x) (x x j )ψ (x j ) f (x j)dx xk x 0 xk x 0 ) ψ(x) dx f (x j ) x x j k l=0, l j k (cd j ) f (x j ) = c j=0 (x x l ) dx f (x j) k d j f (x j ) (5.9) k = 2, 3,..., 7 c, d 0,..., d k 5.2 j=0 () 2 (trpezoidl rule) x = (b )/n n [x i, x i+ ] xi+ f (x)dx x i f (x)dx 2 ( f (x i) + f (x i+ )) (5.0) 2 ( f (x i) + f (x i+ )) = 2 f (x 0) + 2 f (x i ) + f (x n ) (5.) i= Simpson /3 3 2 Lgrnge Simpson /3 2n xi+2 f (x)dx x i f (x)dx 3 ( f (x i) + 4 f (x i+ ) + f (x i+2 )) (5.2) 2 3 { f (x i) + 4 f (x i+ ) + f (x i+2 )} = 3 f (x 0) + 4 f (x 2i ) + 2 f (x 2i ) + f (x 2n ) i= i= (5.3)

78 5 5.2: Newton-Cotes (Abrmowitz ) 2 () c = /2 d 0 = d = 3 (Simpson /3 ) c = /3 d 0 = d = 4 d 2 = 4 (Simpson 3/8 ) c = 3/8 d 0 = d = 3 d 2 = 3 d 3 = 5 c = 2/45 d 0 = 7 d = 32 d 2 = 2 d 3 = 32 d 4 = 7 6 c = 5/288 d 0 = 9 d = 75 d 2 = 50 d 3 = 50 d 4 = 75 d 5 = 9 7 c = /40 d 0 = 4 d = 26 d 2 = 27 d 3 = 272 d 4 = 27 d 5 = 26 d 6 = 4

5.4. Guss 79 5.3. (.3) Simpson /3 4 = (4/5 0)/4 = /5 5.4 Guss Guss p n (x) w(x) f (x)dx w i f (α i ) (5.4) i= w(x) w(x)dx < + α i (i =, 2,..., n) p n (x) = 0 Guss 5.4. [, b] p 0 (x) = µ 0 ( ), p (x),..., p n (x),... λ i > 0 (i = j) w(x)p i (x)p j (x)dx = 0 (i j) (5.5) {p n (x)} p i+ (x) = ( 2 + 3 x)p i (x) 4 p i (x) (5.6) 5.3 p 0 (x) = µ 0, p (x) = µ x + r 0 p 2 (x) = µ 2 x 2 + r (x)(2 ), p 3 (x) = µ 3 x 3 + r 2 (x)(3 ),..., p n (x) = µ n x n + r n (x)(n ),... p n (x) n. n q n (x) {p n (x)} q n (x) = c i p i (x) 2 M.Abrmowitz nd I.A. Stegun Hndbook of Mtemtic Functions (Dover)

80 5 5.3: p 0 (x) p (x) 2 3 4 w(x) [, b] λ i Legendre P i (x) Cebycev T i (x) Lguerre L i (x) Hermite H i (x) x i + 0 2i + i [, ] x 0 2 x 2 [, ] 2 2i + π/2 (λ 0 = π) x i + 2i + i exp( x) [0, ) 2x 0 2 2i exp( x 2 ) (, ) 2 i i! π c i = w(x)p i (x)q n (x)dx λ i 2. p n (x) (n ) α, α 2,..., α n α i α j (i j) α i (, b) 3. Cristoffel-Drboux p n (x) = µ n (x α )(x α 2 ) (x α n ) x y p i (x)p i (y) = µ n p n (x)p n (y) p n (x)p n (y) λ i λ n µ n x y (p i (x)) 2 x = y y x = µ n ( p n (x)p n λ i λ n µ (x) + p n (x)p n(x)) n (5.7) (α, f (α )), (α 2, f (α 2 )),..., (α n, f (α n )) Lgrnge f n (x) (4.5) f n (x) = k= p n (x) (x α k )p n(α k ) f (α k) (5.8) Cristoffel-Drboux (5.7) y = α k, x = α k p i (x)p i (α k ) λ i = µ n λ n µ n p n (x)p n (α k ) x α k (p i (α k )) 2 λ i = µ n λ n µ n (p n (α k )p n(α k ))

5.4. Guss 8 w k f n (x) (p i (α k )) 2 = = µ n p n (α k )p w k λ i λ n µ n(α k ) (5.9) n p n (x) (x α k )p n(α k ) = w p i (x)p i (α k ) k λ i f n (x) = w k k= f (x) p i (x)p i (α k ) λ i f (α k) (5.20) 5.4.2 Guss Guss (5.4) f (x) f n (x) w(x) f (x)dx w(x) f n (x)dx (5.20) w(x) f n (x)dx = = p i (x)p i (α k ) w(x) w k λ k= i f (α k) dx ( w k p i (α k ) f (α k ) λ i k= ) w(x)p i (x)dx (5.2) {p n (x)} (5.5) (5.2) w(x)p i (x)dx = λ 0 b (i = 0) w(x)p i (x)p 0 (x)dx = µ 0 µ 0 0 (i 0) w(x) f n (x)dx = w k f (α k ) (5.22) Guss w k p n (x) α, α 2,..., α n Newton-Cotes p n (x) 5.4 Legendre P i (x) Guss (Guss-Legendre ) P i (x) α,..., α i w i w(x) = f (x)dx k= w k f (α k ) k=

82 5 [, b] x = b 2 t + b + 2 f (t)dt 5.4. 2 x 2 dx = 2 Simpson /3 Guss-Legendre IEEE754 Guss-Legendre(2 ) Simpson(/3 ) Guss-Legendre(3 ) 6.25000000000000000 0 4.9704420834380 0 5.04629629629629539 0 4.99874023683547497 0 f (x) 2n g 2n (x) n n (x), q n (x) g 2n (x) = n (x)p n (x) + q n (x) p n (x) α i (i =, 2,..., n) g 2n (α i ) = q n (α i ) (i =, 2,..., n) q n (x) (α i, q n (α i )) (i =, 2,..., n) n (x) p 0 (x), p (x),..., p n (x) w(x)g 2n (x)dx = = 0 + w(x) n (x)p n (x)dx + = w k g 2n (α k ) k= w(x)q n (x)dx = w(x)q n (x)dx w k q n (α k ) Guss 2n f (x) 2n n 2n order Guss k=

5.4. Guss 83 5.4: Guss-Legendre 2 0.577350269896257645094878050 +0.577350269896257645094878050 3 0.77459666924483377035853079956 0.555555555555555555555555555555 0 0.888888888888888888888888888888 +0.77459666924483377035853079956 0.555555555555555555555555555555 4 0.86363594052575223946488892 0.3478548453745385737306394922 0.3399804358485626480266575903 0.652455486254642626936050778 +0.3399804358485626480266575903 0.652455486254642626936050778 +0.86363594052575223946488892 0.3478548453745385737306394922 5 0.90679845938663992797626878299 0.236926885056890875426404079 0.53846930056830903634420700 0.478628670499366468042954835 0 0.568888888888888888888888888888 +0.53846930056830903634420700 0.478628670499366468042954835 +0.90679845938663992797626878299 0.236926885056890875426404079 6 0.93246954203520278230554493 0.7324492379703450402964272 0.66209386466264536639959509 0.3607657304843860756983353837 0.2386986093969086305072680 0.4679393457269047389870343989 +0.2386986093969086305072680 0.4679393457269047389870343989 +0.66209386466264536639959509 0.3607657304843860756983353837 +0.93246954203520278230554493 0.7324492379703450402964272 7 0.949079234275852452689684047 0.29484966688696932706432679 0.745385599394439863864773280 0.279705394892766679046777423 0.40584553773976690660642076 0.388300505058944950369775488 0 0.47959836734693877550204086 +0.40584553773976690660642076 0.388300505058944950369775488 +0.745385599394439863864773280 0.279705394892766679046777423 +0.949079234275852452689684047 0.29484966688696932706432679

84 5 5.4. π 0 sin x dx Guss-Legendre 2, 3, 4. 5.. () f (x) (b) 5. f (π/4)/ δ f (π/4)/ f (π/4) 0 5 2. 2 log x dx () (b) 4 (c) 4 Simpson /3 (d) Guss-Legendre 4 3. f (x), f (4) (x) 4. (5.9) Simpson /3 c, d 0, d, d 2 5. f (x)dx 2 ( f (x 0)+2 f (x )+ +2 f (x n )+ f (x n ))+ 24 ( f (x 0 )+ f (x )+ f (x n ) f (x n +))