[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

Similar documents
φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)


³ÎΨÏÀ

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)


1 (Contents) (4) Why Has the Superstring Theory Collapsed? Noboru NAKANISHI 2 2. A Periodic Potential Problem

本文/目次(裏白)

抄録/抄録1    (1)V

main.dvi

TOP URL 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

Anderson ( ) Anderson / 14

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

日本内科学会雑誌第102巻第4号

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

( )

: , 2.0, 3.0, 2.0, (%) ( 2.

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

第86回日本感染症学会総会学術集会後抄録(I)

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

第90回日本感染症学会学術講演会抄録(I)

arxiv: v1(astro-ph.co)

QMI13a.dvi


陦ィ邏・2

Ł\”ƒ-2005

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

GJG160842_O.QXD

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

DVIOUT-fujin

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

基礎数学I

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

ssp2_fixed.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Xray.dvi

TOP URL 1


ohpmain.dvi

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

プログラム


QMII_10.dvi

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

eto-vol1.dvi

19 /

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Untitled

koji07-02.dvi

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

nsg02-13/ky045059301600033210

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

Part () () Γ Part ,

(Onsager )

all.dvi

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

0406_total.pdf

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc


Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

I

( ) Loewner SLE 13 February

確率論と統計学の資料

1 Tokyo Daily Rainfall (mm) Days (mm)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

320_…X…e†Q“õ‹øfiÁ’F

( ) ) AGD 2) 7) 1

Transcription:

. D............................................... : E = κ <............................................. : E = k >............................................ 3................................................. 4.. :................................... 5.. :........................................ 5..3............................................ 6.3 β......................................... 7 9 A Green (Dated: June 6, 5) Schrödinger ħh m + g δ (D ) (x ) Ψ(x ) = E Ψ(x ) D D = D = (dimensional transmutation) g <. m D Schrödinger : ħh m + g δ (D ) (x ) Ψ(x ) = E Ψ(x ). (.) E g ħh m ħh m : ħh = m =. (.) Schrödinger (.): + g δ (D ) (x ) Ψ(x ) = E Ψ(x ). (.3) ħh = m =, D δ (D ) (x ) /

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) (renormalization)... D Schrödinger (.3) Green D D... : E = κ < E < E = κ (κ > ) Schrödinger : + V (x ) Ψ(x ) = κ Ψ(x ). (.4) V (x ) = g δ (D ) (x ) (.4) : Ψ(x ) = d D y G B (x,y ;κ)v (y )Ψ(y ). (.5) G B (x,y ;κ) Green : κ + x GB (x,y ;κ) = δ (D ) (x y ). (.6) (A): G B (x,y ;κ) = d D p e i p (x y ) (π) D κ p = π κ π x y D K D κ x y. (.7) K ν (z ) ν (.5) Schrödinger (.4) (.5) κ + x (.6) ( κ + )Ψ(x ) = V (x )Ψ(x ) Schrödinger (.4)(.5) Ψ /

(.5) Schrödinger V (y ) = g δ (D ) (y ) (.5) y : Ψ(x ) = g G B (x,;κ)ψ(). (.8) Ψ() E = κ < Green (.7) (.8) x = : Ψ() = g G B (,;κ)ψ(). (.9) : = g G B (,;κ). (.) κ κ g E = κ (.) (.) (self-consistency condition)... : E = k > E = k > (k > ) Schrödinger : + V (x ) Ψ(x ) = k Ψ(x ). (.) V (x ) = g δ (D ) (x ) V (x ) x Schrödinger (.) Ψ + k ( k ) : Ψ + k (x ) = ei k x + d D y G + (x,y ;k)v (y )Ψ + k (y ). (.) G + (x,y ;k) Green k + x G + (x,y ;k) = δ (D ) (x y ) (.3) : G + (x,y ;k) = d D p e i p (x y ) (π) D k p + i ε = i 4 k π x y D H () D k x y. (.4) ε H ν () (z ) ν (.) Lippmann- Schwinger. (.) Schrödinger (.4) (.) k + x (.3) (k + )Ψ + k (x ) = V (x )Ψ+ k (x ) Schrödinger (.)(.) Ψ + k Schrödinger (.) Lippmann-Schwinger Schrödinger Schrödinger (.4) ε 3/

(.) V (y ) = g δ (D ) (y ) y : x = : Ψ + k () : (.5): Ψ + k (x ) = ei k x + g G + (x,;k)ψ + k (). (.5) Ψ + k () = + g G + (,;k)ψ + k (). (.6) Ψ + k () = g G + (,;k). (.7) Ψ + k (x ) = ei k x + g G + (x,;k) g G + (,;k). (.8) Green Schrödinger H ν () : (z ) z G + (x,y ;k) k D 3 i[k x y (D e 3)π/4] 4π π x y D : πz ei (z (ν+)π/4) Green as x y. (.9) Ψ + k (x ) ei k x [k x (D 3)π/4] ei + f (k) x D as x. (.) f (k) :.. f (k) = k D 3 g Ψ + k 4π π () = k D 3 g 4π π g G + (,;k). (.) Schrödinger (.)(.) G B (,;κ) G + (,;k) : d D p G B (,;κ) = = for D, (.a) (π) κ + p d G + D p (,;k) = = for D. (.b) (π) k p + i ε g D = 4/

... : (.a)(.b) p : d p (π) d p (π). (.3) p <Λ Λ (.) : d p (.) = g G B (,;κ) = g (π) κ + p Λ p <Λ Λ πp d p = g (π) κ + p = g d p 4π κ + p = g κ 4π log + Λ. (.4) κ Λ (.4) Λ = Λ : κ + Λ Λ log = log + κ Λ = log + log + κ κ κ Λ κ Λ κ = log + κ +. (.5) κ Λ Λ Taylor log(+ x ) = x x + Λ (.4) logλ (.5) Λ (.):... : g G B (,;κ) = g 4π log Λ Λ + O (Λ ). (.6) (.a)(.b) D ε D = ε : d p d D (π) p (π), (.7a) D κ g g µ D. (.7b) µ D g (D D ) µ (.) : d (.) = g µ D G B (,;κ) = g µ D D p (π) D κ + p g µ D = (4π) D / Γ (D /) d p κ + p = g (µ/κ) D (4π) D / Γ (D /) p D d x x D / + x = g (µ/κ) D Γ ( D /) (4π) D /. (.8) 5/

3 d D p f (p) = d p p D f (p ) (f p = p ) 4 x = p /κ B (p,q ) = πd / Γ (D /) x p Γ (p)γ (q ) d x = ( + x ) p +q Γ (p + q ) (.9) Γ () = (.8) D = D =.99 ε (.8): (.8) = g (µ/κ)ε Γ (ε/) (4π) ε/ D = ε (.3) = g ε/ 4π µ Γ (ε/). (.3) 4π κ ε (4πµ /κ ) ε/ Γ (ε/) ε = : ε/ 4π µ = e ε log 4π µ κ = + ε 4π κ log µ + O (ε ), (.3a) κ Γ (ε/) = ε γ + O (ε). (.3b) γ.577 Euler (.3)(.) : g µ D G B (,;κ) = g µ γ + log(4π) + log + O (ε). (.33) 4π ε κ..3. Λ ε g Λ ε (.6)(.33) g ( E = κ ) (.) : (): (): g = 4π g = 4π Λ µ log + log + O (Λ ), (.34a) µ κ µ γ + log(4π) + log + O (ε). (.34b) ε κ (.34a) µ : (): (): := lim Λ := lim ε g + Λ 4π log, (.35a) µ g + 4π ε γ + log(4π). (.35b) := lim ε g + 4π ε minimal subtraction ( MS) (.35b) modified minimal subtraction ( MS ( )) MS 6/

g Λ ε g (.34a)(.34b) Λ ε : = 4π log µ. (.36) κ E B = κ : 4π E B = µ exp. (.37) (.35a)(.35b)(.) D = : κ f (k) = 8πk g G + (,;k). (.38) G + (x,y ;k) = G B (x,y ; i k) κ = k G + (,;k) : Λ µ log + log + O (Λ ) (), G + 4π µ k (,;k) = (.39) µ γ + log(4π) + log + O (ε) (). 4π ε k (.35a)(.35b) f (k) = 8πk + 4π log µ (.4) k (.36) = µ 4π log( E B ) (.4) π f (k) = k log EB k (.4) E B E B g E B.3. β µ E B (.) µ E B µ E B µ : µ d d µ E B =. (.4) 7/

d d µ µ d d µ (.4) µ E B µ (µ) E B (µ, (µ)) µ d E B d µ = µ E B µ + µ d d µ (.4): E B µ µ + β(g R ) E B =. (.43) β( ) β : β( ) := µ d d µ. (.44) E B (.37) µ β : = µ E B µ + β( ) E B = µ e 4π/ + β( ) µ e 4π/ 4π gr = 4π gr β( ) E B. (.45) (.45) β (.46) (.47) d g R ( < t < ) : ḡ (t ) β( ) = π g R (.46) µ d d µ = π g R (.47) d g R = d µ π µ µ µet = µe t d µ π µ. (.48) µ ḡ (t ) µe t : ḡ (t ) = π t. (.49) ḡ (t ) (running coupling constant) ḡ (t ) e t k e t k ke t : f (ke t ; ) = 8πke t + 4π log µ k e t = e t 8πk t π + 4π log µ = e t 8πk ḡ (t ) + 4π log µ k k = e t f (k;ḡ (t )). (.5) 8/

ḡ (t ) π π t Figure : ḡ (t ) =. t = g π t R () ( ) e t / (.5) k e t k ḡ (t ) ḡ (t ) t ḡ (t ) () t. : C. Thorn, Quark confinement in the infinite-momentum frame, Phys. Rev. D9 (979) 639-65 [INSPIRE]. Roman Jackiw 99 : R. Jackiw, Delta function potentials in two-dimensional and three-dimensional quantum mechanics, in M. A. B. Bég Memorial Volume, A. Ali and P. Hoodbhoy, eds. World Scientific Publishing, 99 [INSPIRE]; scanned version available in the KEK library: http://ccdb5fs.kek.jp/cgi-bin/img_index?3443. (self-adjoint extension) ( ) Jackiw Schrödinger (.3) Schrödinger. 9/

S[ψ,ψ ] = d t d x i ψ t ψ ψ g ψ 4 (.) 4 Γ (4) Γ (4) Oren Bergman 99 O. Bergman, Nonrelativistic field theoretic scale anomaly, Phys. Rev. D46 (99) 5474-5478 [INSPIRE].. Lippmann-Schwinger Bernard Lippmann Julian Schwinger B. A. Lippmann and J. Schwinger, Variational Principles for Scattering Processes. I, Phys. Rev. 79 (95) 469-48 [INSPIRE] Steven Weinberg Lectures on Quantum Mechanics..3Sidney Coleman Erick Weinberg 973 Coleman-Weinberg S. Coleman and E. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D7 (973) 888-9 [INSPIRE] Kenneth G. Wilson K. G. Wilson and J. B. Kogut, The renormalization group and the ε expansion, Phys. Rep. (974) 75-99 [INSPIRE] A. Green Green G B G B : ( κ + x )G B (x,y ;κ) = δ (D ) (x y ). (A.) Fourier : G B (x,y ;κ) = d D p (π) D e i p (x y ) κ + p. (A.) Schwinger : κ + p = d t e t (κ +p ). (A.3) /

Schwinger t Schwinger (A.3)(A.): G B (x,y ;κ) = = d D p (π) D d t e t κ = (4π) D / = κ 4π π x y d t e t (κ +p )+i p (x y ) x y 4t D j = d t t D / e t κ D x y 4t d s e s D / d p j π e t p j i x j y j t κ x y (s + s ). (A.4) s = κt / x y Green G B (x,y ;κ) = π κ π x y D K D κ x y (A.5) 3 : κ e κ x y G B (x,y ;κ) = π K κ x y for D = ; for D = ; (A.6) K / (z ) = K / (z ) = π z e z 4π x y e κ x y for D = 3. /