McCain & McCleary (1979) The Statistical Analysis of the Simple Interrupted Time-Series Quasi-Experiment

Similar documents
Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

時系列データ解析による予測と最適化 ~エネルギー需要、発電、価格のモデリング~


seminar0220a.dvi

時系列データ解析による予測と最適化 ~エネルギー需要、発電、価格のモデリング~

揃 Lag [hour] Lag [day] 35

時系列解析と自己回帰モデル

‘¬”R.qx

43-03‘o’ì’¹‘®”q37†`51†i„¤‰ƒ…m†[…g†j.pwd

-- o C inter Arctic Oscillation Index Sapporo Air-Temp Matlab randn (red n

橡ボーダーライン.PDF

TOPIX30 2 / 37

p1

QMI_10.dvi

‚æ01Łª“û†œ070203/1‘Í

yamato_2016_0915_色校_CS3.indd

D _SR_DENSEI_QX

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)

1


03.Œk’ì

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>

dvi

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

橡最終原稿.PDF

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

4/15 No.

Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Managemen

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

nsg02-13/ky045059301600033210

最小2乗法

Gmech08.dvi

z.prn(Gray)


日立金属技報 Vol.34

pc725v0nszxf_j

fiš„v6.dvi

第11回:線形回帰モデルのOLS推定

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

1. 2. (Rowthorn, 2014) / 39 1

y[n] y[n 1], y[n 2] v[n] R k c m y(t) Figure 1: series.r series <- function(n,delta,k,c,m,y0,y1) { a1 <- (2* m/delta^2 - k) / (m/delta^ *c/delta

自由集会時系列part2web.key

23_02.dvi

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

過電流保護用/突入電流抑制用/過熱検知用"ポジスタ"

³ÎΨÏÀ

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

カルマンフィルターによるベータ推定( )

082_rev2_utf8.pdf

Gmech08.dvi

Transcription:

Quasi-Experimenaion Ch.6 005/8/7 ypo rep: The Saisical Analysis of he Simple Inerruped Time-Series Quasi-Experimen INTRODUCTION () THE PROBLEM WITH ORDINAR LEAST SQUARE REGRESSION OLS (Ordinary Leas Square) OLS AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODELS inerruped ime-series ARIMA Box-Jenkins 976 5000 5000 ARIMA MANOVA or GG ANOVA OLS ANOVA ( ) The Deerminisic and Sochasic Componens of a Time Series p.35 - Defining ARIMA (p, d, q) ARIMA p, d, q idenificaion ARIMA(,0,0) =.7 56% 6.0 (p.35 )

Saionariy ARIMA nonsaionary in he homogeneous sense nonsaionary in he homogeneous sense,, 3, 4, 5,, N (),,,,, ( ) No. = + θ 0 = θ 0 d Auoregressive Models p p 0 p = ARIMA(,0,0) p = ARIMA(,0,0) + a + a + φ < + < φ 3 a a ~ NID(0, σ ) Moving Average Models q φ + φ < 3 p = φ φ < φ <

ARIMA(0,0,) ARIMA(0,0,) θ = a a = a θ a θa θ < + < Mixed Models ARIMA(,0,) + a θa mixed AR MA Noise Model Idenificaion ACF PACF p.4 ACF Lag 0 3 4 5 6 7 8. Lag. 3 4 5 6 7 8 Lag.. 3 4 5 6 7 8 Lag 3... 3 4 5 6 7 8 Lag k ACF, rk r k N k = = N ( )( = + k ( ) ) for k =,, 3,.. () ACF ACF PACF, rkk ACF ule-walker

ACF PACF ACFPACF ACFPACF ACF PACF ARIMA(p,d,q) Figure 6.(ah ) Nonsaionary Processes Whie Noise Process Auoregressive Processes Moving Average Processes Mixed Processes Auocorrelaions Parial auocorrelaions lag lag p p q lag q q - p p - q ACF 4 k r j j= Q Q = N. d. ACFPACF 3. p q p q 5 4. 4 = - 5 underesimae overesimae

Esimaion of and Values ARIMA(p,d,q) - << + Diagnosis Q ACF Q ACF lag lag lag ARIMA SEASONAL MODELS Muliplicaive ARIMA Seasonal Models. Figure 6. ARIMA(p,d,q) 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 30 3 3 33 34 35 36 N-........................................ N + a

regular auocorrelaion seasonal auocorrelaion seasonal auocorrelaion P D Q S ARIMA (p, d, q) (P, D, Q) s regular seasonal ARIMA (,0,0)(,0,0) φ φ + a + φ + a + φ φφ 3 Idenifying he Seasonal Model ARIMA ACFPACF,4 4,8 seasonal regular seasonal ARIMA ARIMA (,0,0)(,0,0)S ARIMA (,0,0)(,0,0)S ARIMA (0,0,)(0,0,)S ARIMA (0,,)(0,0,)S ARIMA (0,,)(0,,)S

Auocorrelaions Parial auocorrelaions Seasonal Nonsaionary Seasonal Auoregressive Seasonal Moving Average ACF regular p+sp p p = 0 = 0 Q = lag q S q S + q Q q =, Q =, S =,,, 3, 3, 4, 5. ACFPACF ACFPACF. lag ACFPACF lag 4 ACF 3. regular PACF ACF 4. THE INTERVENTION COMPONENT ARIMA = noise = noise + inervenion p.6

Box-Jenkins ransfer funcions 6 Abrup, Consan Change = ω noise () I + I = 0 before he inervenion, < i = afer he inervenion, i prereamen : posreamen prereamen : posreamen Gradual, Consan Change δ + = noise (3) ()0 0 n δ = δ (0) + ω() = ω i = i i δ = i = δ ( ω) + ω() = δω + ω = δi + = δ ( δω + ω) + ω() = δ ω + δω + ω n n n = δ ω + δ ω +... + δ ω + δω + ω 6 i-3 i- i- i 3

ω change in level = -δ Box & Tiao(975) Hibbs(977) Abrup, Temporary Change (3)I I = 0 before he inervenion, < i = a he momen of inervenion, = i = 0 hereafer, > i n δ = δ (0) + ω() = ω i = i i δ = δ ( ω) + ω(0) = δω = i = δi + + = δ ( δω) + ω(0) i = δ ω = δ n ω n i-3 i- i- i 3 Which Transfer Funcion Should Be Used?. I (3)

..9 I 3.. () SUMMAR OF THE MODELING STRATEG Inervenion Hypohesis Tes ARIMA 7 / THREE EXAMPLES ARIMA ARIMA(0,,0)(0,,) ARIMA(0,,0) ACFPACF Deusch and Al(977) ARIMA 7

variance " unexplained" funcion ransfer = CONCLUSION 8 8 --;